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g-EXTENSIONS OF GENOCCHI NUMBERS

MEHMET CENKCI, MUMON CAN, AND VELI KURT

ABSTRACT. In this paper g-extensions of Genocchi numbers are de-
fined and several properties of these numbers are presented. Prop-
erties of g-Genocchi numbers and polynomials are used to construct
g-extensions of p-adic measures which yield to obtain p-adic inter-
polation functions for g-Genocchi numbers. As an application, gen-
eral systems of congruences, including Kummer-type congruences
for g-Genocchi numbers are proved.

1. Introduction

The Genocchi numbers GG, may be defined by the generating function

o 2N 60 (<
et4+1 "nl T
n=0
It satisfies G1 = 1,G3 = G5 = G7 = --- = 0, and even coefficients are
given by
(2) Gn =2 (1 - 2n) Bn - 2nE2n_1(0),

where B,, are Bernoulli numbers and E,(z) are Euler polynomials.
The Bernoulli numbers are defined by

LSl <2
m—nzz‘a no ([t < 2m),

which can be written symbolically as eBt = et_t—T’ interpreted to mean

that B™ must be replaced by B, when we expand on the left. This
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relation can also be written e(BTt — Bt — 1 or, if we equate powers
of t,
1 ifn=1
_ n_ _ y
By=1,(B+1) B, {0 ifn>1,

where again we must first expand and then replace B* by B;. The
Bernoulli polynomials are then

n
n —j
B,(z)=(B+z)"= Z (i)Bix” '
=0
The multiplication theorem for Bernoulli polynomials can be stated as
follows: If n and m are positive integers, with m > 1, then

m—1 .
1—n _ l.
m " Bp(ma) = Z B, (m + m) )

7=0

One of the most important theorem relating to Bernoulli numbers is
the Staudt-Clausen Theorem:

THEOREM 1. ([3]) For m > 1,
1
BZm = A2m - Z —
(p-T)j2m F

where Aoy, is an integer and the summation is over all primes p such
that (p — 1)|2m.

What Theorem 1 tells us is equivalent to if m > 1, then the denomi-
nator of By, (in lowest terms) is exactly the product of those primes p
for which p — 1 divides 2m.

It follows from (2) and the Staudt-Clausen Theorem that the Genoc-
chi numbers are integers.

The Euler polynomials E,(z) may be defined by the generating func-
tion

(3)

e e]

ZEn(ac)g, (¢ < 7).

n=0

Zezt _
et +1

From (3) and (1) we deduce that

. = n Gk+1 n—k
En‘”U)‘Z(k)mx -

k=0
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For real z, the Genocchi polynomials Gy, (z) can be defined as follows:
2™ & t"
(4) i T;)Gn(m);!, (It} < ).
Note that G,,(0) = Gy, and

Gn(z) = zn: (Z) Gz *

k=0
For an odd positive integer m, the multiplication theorem for the Genoc-
chi polynomials can be stated as

5) ’“Z (~1YG, (“J> Go(),

which follows from (4).
In [1] and [2] Carlitz defined a set of numbers 7, = 1,(¢) inductively
by

1 ifn=1
— n __ — )

with the usual convention about replacing n* by 7;. These numbers
are g-extensions of the ordinary Bernoulli numbers B,,, but they do not
remain finite when ¢ = 1. So he modified the definition as

1 iftn=1,
ﬂo=1,q(qﬁ+1)”—ﬂn={ 0 ifn>1.

These numbers were called the ¢-Bernoulli numbers; which reduce to
B,, when ¢ = 1. Defining ¢-Bernoulli polynomials, he also proved prop-
erties generalizing those satisfied by B, and Bp(z). In [19], Koblitz
used these properties, especially the distribution relation for g-Bernoulli
polynomials, to construct g-extension of p-adic L-functions which inter-
polate the g-Bernoulli numbers. By Koblitz’s suggestion, g-analogues of
the Dirichlet L-series were constructed by Satoh [20]. The series were
essentially defined as a sum of two g¢-series, what causes difficulty in
studying these series. In [10], Kim gave explicit formulas of p-adic ¢-L-
functions which interpolate generalized g-Bernoulli numbers attached to
a primitive Dirichlet character .

The remarkable relation between Bernoulli and Genocchi numbers (2)
represents a method to define g-Genocchi numbers in connection with
g-Bernoulli numbers. In [17], Kim et al. defined ¢g-Genocchi numbers
and ¢-zeta functions which interpolated ¢-Genocchi numbers at non-
positive integers, with the help of this relation. Han and Zeng treated
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a g-analogue of the median Genocchi numbers and discussed their re-
lations to some polynomials and ordinary Genocchi numbers, including
some continued fraction expansions, in [5]. In [6] Han et al. gave a new
g-analogue of Euler numbers, and unlike the generating functions of the
previous g-analogues of these numbers (e.g., G. E. Andrews, 1. Gessel,
Proc. Amer. Math. Soc. 68(1978), no. 3, 380-384; and G. E. Andrews,
D. Foata, European J. Combin. 1(1980), no. 4, 183--287), the generat-
ing functions for these new analogues had elegant continued fraction ex-
pansions. They also gave combinatorial interpretations of their ¢-Euler
numbers and explained the relation to ordinary Genocchi numbers.

In this paper we give another construction of ¢g-Genocchi numbers
using the methods appear in Kim’s recent papers [11], [12], [14] and
[15]. We prove several properties for g-Genocchi numbers, and using
these properties we define g-extensions of p-adic measures which en-
ables us to obtain p-adic interpolation function for ¢-Genocchi numbers.
Furthermore we give some applications of this p-adic interpolation func-
tion, in particular, we obtain general systems of congruences, including
Kummer-type congruences for g-Genocchi numbers, following the ap-
proach in Young’s papers [21] and [22].

2. Construction of g-extensions of Genocchi numbers

Throughout this paper p will denote an odd prime number, Z, the
ring of p-adic integers, Q, the field of p-adic numbers, C the field of
complex numbers and C, the p-adic completion of the algebraic closure
of @y, as usual. If K is a finite extension of Q,, then Dg will denote its
ring of integers and Dy will denote the multiplicative group of units in
Dy . When talking about g-extensions, ¢ can be variously considered as
an indeterminate, a complex number ¢ € C or a p-adic number q € C,. If
q € C we assume that |g] < 1. If ¢ € Cp, it will be assumed that |1—¢q|, <
p~ V@D with |p|, = p~»® = p~! where vp(p) be the normalized
exponential valuation of C,. Thus for |z}, < 1, we have ¢° =exp(log,g),
where log, : C — C, is the Iwasawa p-adic logarithm, the unique
function which is given by the usual series >_(—1)"*(z — 1)"/n when
|z — 1], < 1; satisfies log,(zy) =logyz-+log,y and normalized by the
condition log,p = 0 (see (8]).

We use the notation
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Thus
lim[z: ¢ =z,
g—1

for any x in the complex case and any x with |z|, < 1 in the p-adic case.
The Teichmiiller character w on Z is defined by setting w(z) be the
unique (p — 1)th root of unity congruent to  modulo pZ,.
In the complex case, we denote the generating function of g-Genocchi

numbers Gi(q) by Fq(G) (t) and define by

(o o]

(6) Z Grlg)77 = a1+ )t Y _(—1)"g e,

n=0

where ¢ is a complex number with |¢| < 1. The remarkable point is that
the series on the right of (6) is uniformly convergent in the wider sense.
Hence, expanding e! and comparing the powers of t, we have

(7) Gilg) = ka(1+ ) ) _(-1)"¢"[n]* ",
n=0

Fq(G) (t) is uniquely determined as a solution of the following ¢-difference
equation:

Fi9(t) = —'Fy9(qt) + q(1 + q)t.
From (6), it is easy to see that

Gula) = 10, S (b

(8) (1 _ q)k-l m 1+ qm

We also have

ZGk —~2q(1+q Zq%e”q”z q(1+ q)t Zq elnlt

n=0

- Lot M rd) me)m’“

2logq
q- +k
Ioaq Lot (14 ) Zﬁk L

where (i(q) are g-analogues of Bernoulli numbers defined by the gener-

ating function
F()- elq—th elnlt,
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for [t| < 1 (for additional information about generating functions of g¢-
Bernoulli numbers see, for example, [4], [13], [18], [20]). Equating powers
of t we obtain

2
Cule) = a(1+a) (Bule) — 212 pu(qD) + L)L

2logg (1 —g)F’

which is the g-analogue of (2).
Using (8) we can determine ¢-Genocchi numbers explicitly. For ex-
ample, the first few ¢-Genocchi numbers are

2¢° 3¢°(1 - ¢
2 Gale) =
l+q (1+¢*)(1+q°)
For the limiting case ¢ = 1, we obtain the ordinary Genocchi numbers
Gg.

For s € C with Re(s) > 1, we define

9) (s)=q(1+q) Z

Note that <§G) (s) is a memoporphic function on C with only one simple

Golg) = 0,G1(q) = ¢,G2(g9) = —

n+1

pole at s = 1. The values of {éG) (s) at non-positive integers are obtained
by the following theorem:

THEOREM 2. For any positive integer k, we have

Gr(q)
T

Proof. 1t is clear by (7). O

G-k =-

REMARK 3. The main motivation of this paper originates from the
limiting case ¢ = 1 in (9). This yields the formula

( g 7 a5~
2 Z I'(s)J ee+1 at,
0

from which the ordinary Genocchi numbers appear as residue of the
integral. Thus defining

Gl =2y EIT
n=1

we have
—1 ifk=1

CG(l‘k)z{ G ifEg>1
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(see [9]). Therefore g-Genocchi numbers are the g-analogues of the values
of {z(s) at non-positive integers.

For positive integer k, we define g-Genocchi polynomials Gi(g, z) as

k

1) Gilea) = (G0 + ) = 3 () Gml@amisl .

m=0

The generating function of ¢-Genocchi polynomials is then
(11) F(G) (z,t) ZG’C (x,q)— k' = F(G)( t)ellt,
k=0

From (11)-it follows that

)
Fq(G) (1‘7 t) = q(]_ + q)t Z(_l)nqn-{—we[n—i—m]t,

n=0

and

k
_ q1+9q kN m(=1)mtgm®

For a primitive Dirichlet character x of conductor an odd natural
number f, we define the generalized ¢-Genocchi numbers attached to x
as

f
(12) Gro (@) = [ x(a)(~1)°Gi (%qf)

a=1

We conclude this section with the following lemma which is important
for the construction of the p-adic ¢-Genocchi measures.

LEMMA 4. (g-distribution relation) For any positive odd integer m,
we have

z+a ., Gz,
(13) [m]klz PG () = SH2d),

for all k > 0.
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Proof.
o] m—1
- (=1)° T+a tk
Z[m]k 12 — Gk N
+=0 = (™) m k!
m—1 fove)
(-n* 1 ) (m+a )([m]t)k
= = 7 2 Gk "
=+ am) m] m k!
m—1 00
(_1)(1 [m]t +_r+a [+m. m][ ]t
— mey 4 gm —1\* (g™ el SR | Im
pard qm(1+qm) [m] q ( q )7;)( ) (q )
m—1 [e%9)
=t (_1)‘1 Z(_l)nqmn+z+ae[mn+m+a]t
a=0 n=0
m—1 oo
=t (__l)mn+aqmn+m+ae[mn+x+a]t
a=0 n=0

[l
)
(]
T
—_
~—
Q&\
+
8
<7
+
&8

0
1 = tk
= g1+ q) ZGk(m’q)H'

Comparing the coefficients of t*/k! yields the stated result. O

REMARK 5. Writing z = 0 in (13), we get
E: 1+q k@Wq d(l+q

Then using (10), we obtain

- G
" g1t q) MY g gy *Y
14 k—1 m—1
ST ()G S g
—;O(J) P 2 (VP

(14) is the g-analogue of the recurrence formula for ordinary Genocchi
numbers presented by Howard [7].
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3. ¢-Genocchi measures

For a positive odd integer f, let
X = 1limZ/ fp"Z,
a+ fp"Zy = {z € X: 2z = a(modfp")},

X* = U (a+ fp"Zp).

0<a< fp™
(a,p)=1

The natural map Z/fp"Z — Z/p™Z induces 7 : X — Zp. If f is a
function on Zj, we also use f to denote the function fox on X.

DEFINITION 6. A Cp-valued measure p on X is a bounded finitely
additive map from the set of compact open U C X to C,.

A bounded function p on compact open sets of the form a + fp"Z,
extends to a measure if and only if additivity is checked for the disjoint
unions a + fp"Z, = |J (b+ fp"t'Z,) with the union taken over the p
values of b, 0 < b < fp"*!, for which b = a(mod fp"). A measure p
extends to continuous functions:

(15) [fin=tm 3" f@uta+ 1572,

We now define ¢g-Genocchi measures.

DEFINITION 7. For k£ > 0 and n > 0,
k n nik—1 (=1 ( a  r n)
a+ fp"Zy) = —e o Gk | ')
94(a+ f"Zp) = 2" 55 1 a7y O
Note that if £ = 1 then

Mat fo" L) = gola+ fp'Zy) = —— D" jags - TV

is the ¢g-Genocchi distribution.
LEMMA 8. gf]“ is a measure on X for all k > 0.

Proof. Tt suffices to check that

p—1
D gia+ifp” + L) = gF(a + f"Z,).
i=0
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p—1
> ggla+ifp" + fp L)
=0

—1 a-t+ifp™ .
= Z[fpn+l]k—l (-1) +ifp Gy (a+zfpn qu"+1)
P qun+1 (1+qun+1) fpn+1 ’

-l (—DW)Z L4
— n+11k—1/_1\a ( fp" " P

Using Lemma 4 and the relation [fp"*!] = [fp"] [p qf pn], the lemma
follows, since f is odd. O

We can express the ¢g-Genocchi numbers as an integral over X, by
using the measure g(’; .

LEMMA 9. For any k > 0, we have
Gk,x(q) if # 1
ko) = d @0ty FXT D
/X(m)d‘qq(m) ”{ Gila) ify=1.

X q(1+q)
Proof.
[ x@dh(a)
X
frt-1
—].)a a n
= lim "’“‘I»M—HG <—, fp)
n—00 (;) [fp] qu (1+qu ) k fpn q

k-1

= lim [f]* §x<a><—1>“ o]
) Z O g (%p‘:i} (qf)”">

im0 (¢F) (1+(qf)p>
-1)@ a
=l (77 IZqf 1+qf)G (?’qf>
{ wiseh EXAL

Grlq)
q(1+q)

Finally we give a relation between g’q“ and g,. O

if x =1.
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LEMMA 10. For any k > 0 we have
dgy () = k[a]* " dgy(z).
Proof. By (10) we have
gf,“ (a+ fanp)

_ n1k— (*l)a a i
= [fp")F 1W5Gk (W’qu >

(
it s (o) [

1=0

- s (1) (0

=
_ (=1)ee”
(g

Therefore we obtain

= [fp"]F

kq/?" [a)*~1 + [fp"] x (p-integral).

dgh(z) = klz]* ' dgy(). O

4. Interpolation function and congruences for ¢-Genocchi
numbers

In this section, using the integral representation of g-Genocchi num-
bers in the foregoing section, we define a g-l-series which interpolates
g-Genocchi numbers at non-positive integers. As an application of this
representation we prove general systems of congruences for ¢-Genocchi
numbers, including Kummer-type congruences.

Let w be the Teichmiiller character modp. For x € X* weset (z: ¢) =
[z]/w(zx). Note that since | (z: q) — 1|, < p~Y®~D (2 : ¢)® is defined
by exp(slog, (z : ¢)), for |s|, < 1 and (z : ¢)”" = 1 (modp™).

Fix an embedding of the algebraic closure of Q, Q into Cp. We may
then consider the values of Dirichlet character x as lying in C,. For
n € Z we define the product x, = xw™" in the sense of the product of
characters. This implies that f, )|f(,)p. However, since we can write
X = Xxaw", we also have fiy|fy,)p. Thus f,) and fq,, differ by a
factor that is a power of p. In fact, either f(,..)/f(y) € Z and divides p,
or fi)/fixn) € Z and divides p.

We define an interpolation function for g-Genocchi numbers as fol-
lows:
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DEFINITION 11. For s € Z)

lz(an)(st) = /(1 —s){(z:q)"° x(x)dg,(x).
X*
The values of this function at non-positive integers are given by:

THEOREM 12. For any k > 1, we have

Grx(a) _ [Pl x(p) el ( p) if # 1
G e T (+q7y — g A+gpT) kX q X ;
lZ(qu) (1 -k, xw 1) = {

G k-1 .
q(fJ(rqq)) B q”[ﬂﬁtq”)Gk’X (a”) ifx=1

Proof.
lz(,’Gq) (1 - k,xwk—l)

= [k 0"t @dgg(o)

X*

—k/[m]k Uy (x)dgy(x /[x]’“ "x(z)dgy(x)

= / 2] x(z)dgq(x / [p]*~*x (pz)dgq(p)

X

~  [lal"x(a)doy(x)
X
K Ix) [ lo @1 x(o)dg )
X

- / x(@)dgk(z) — bl x(p) / x(@)dgh ()

X X
G k—1 . ,

{ o fﬁ(;f)) - q[ﬂ‘(lfgg‘)) Grx (") Hx 71,
G .
q(fJ(r?) q”[z()]HqP)G]c x (@) x=1,

where we use Lemma 10,

wiig ) _ G0 (17 @) .
) 1 + qun+1 - 1 + (qp)fpn - ng (.’L‘ + fp Zp)

9q (pz + fp
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and Lemma. 9. O

We now give general systems of congruences for g-Genocchi numbers.

Let K; = Qp(g). For i € Z, we consider w*~'g,; as a Dg,-valued
measure on Dy, . Let ¢ € Dk, with |1 — g|, < p~*/®~D. Then q =
1(modpDk, ). If z € D then (z,p) =1 and

[]

Thus we have (z : ¢) = 1 (mod pDg, ).
If ¢ is a nonnegative integer, the difference operator A, operates on
the sequence {a;,} by

_1-¢
-

:1+q+---+qw_1Ex(modp]DKq).

Al = Qmte — Qup-

The powers Al of A, are defined by A2 = identity and AL = A, o0 AL~1
for positive integers I, so that

l
! o
(16) Blan =3 (1) 1) T
=0
THEOREM 13. Let ¢ = 0 (mod(p — 1)pA) with A > 0. Then

Gm(q)
m

for all m > 1 and | > 0, where A’ = min{m — 1,{(A+1)}.

Alc =0 (fnodpA'DKq)

Proof. From Lemma 9 for a primitive character y we have

_ - _ Gila)
an [ dat@) = [ kietagyta) = KL

Dk, Dk,
The function Ty, (s,4) defined for s € Z, by
T,,(5,) = [ (o:0) 0" (@)dgn(o)
D,

is the p-adic ¢g-T'-transform of the measure w®™! gq. Furthermore when n
is a nonnegative integer, n > 1, with n = i(mod(p — 1)), we have

(18) Ty, (n—1,i) = / [x]"—ldgq(w).

DX
Kq
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It follows from (16) and (18) that for ¢ = 0 (mod(p — 1)p?), we have

l
Ay (m =1,0) = 3 (1) (-0 T (m - 1+ ey

=0
_ / 2] ([2])° — 1) dgy(x),
P,

when m = i(mod(p — 1)). Since ([z]* — 1) = 0 (mocl plA’]D)Kq) for all
S ]D)}((q (where A’ = A+ 1), and g, is an D, -valued measure, this
implies

Alchq (m—-1,i) =0 (mod plA/]D)Kq) .

On the other hand, [z]™~! = 0 (mod p™ Dy, ) for all z € Dk, so
from (17), (18) we obtain

]D>}‘<q
1
= [ mlalm g (o)
D,
Gm(q) ~1
= ——= (mod p™ "Dy, )
Therefore
. Gm m—
Alchq (m—1,i) = Al m(q) (mod p™ 'Dg,),
which yields the stated result. O

5. Final remarks

Professor Taekyun Kim has pointed out the following connections
between ¢-Genocchi numbers and g-Volkenborn integral:
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In {11} he defined the p-adic g-integrals as

pN-1

[ 1@ @)= Jim S s @),
Zy =0

that is, p4 (z) defined by
Npy_ &
pg (z+p" Zp) = A

The ¢g-Genocchi numbers then can be defined as

Gr(a)=4q / [ dpg) (2).
ZP
In [16] he considered g-numbers by using g¢-Volkenborn integral as
follows:

/ [2]* dp_g) (z) = Kig
Zy

for positive integer k. From this it can be noted that

() ) s

=0
which is similar to (8).
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