Effects of Angiopoietin-2 on the Proliferation and Activity of Ostoeblasts and Osteoclasts

Angiopoietin-2가 조골세포와 파골세포의 성장과 활성에 미치는 영향

  • Ko, Seon-Yle (Department of Oral Biochemistry, Dental Research Institute, School of Dentistry, Dankook University)
  • 고선일 (단국대학교 치과대학 구강생화학교실, 치의학연구소)
  • Published : 2006.03.30

Abstract

The present study was undertaken to determine the possible cellular mechanism of action of angiopoietin-2 in bone metabolism. The effects on the osteoblasts were determined by measuring 1) cell viability, 2) alkaline phosphatase (ALP) activity, 3) gelatinase activity, and 4) nitric oxide production. The effects on the osteoclasts were investigated by measuring 1) tartrate-resistant acid phosphatase (TRAP)(+) multinucleated cells (MNCs) formation, and 2) resorption areas after culturing osteoclast precursors. Angiopoietin-2 treatment showed a significant increase in both the viability and ALP activity of osteoblasts. Angiopoietin-2 increased the activity of gelatinase and nitric oxide production. In addition, angiopoietin-2 decreased the osteoclast generation induced by macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL), and inhibited osteoclastic activity in (M-CSF)-dependent bone marrow macrophage (MDBM) cell cultures. Taken these results, angiopoietin-2 may be a regulatory protein within the bone marrow microenvironment.

혈관신생(angiogenesis)은 골조직을 포함하는 모든 조직의 발생 및 개조(remodeling) 과정에 필요하다. 본 연구는 혈관 신생에 관여하는 단백질인 angiopoietin-2가 골대사에서 미치는 영향을 알아보기 위하여 세포수준에서 관찰하였다. 즉 조골 세포에 미치는 영향을 알아보기위하여 세포생존률, 염기성인산분해효소 활성, gelatinase 활성 및 nitric oxide 생성을 관찰하였고, 파골세포에 미치는 영향을 알아보기 위하여 tartrate-저항성 인산분해효소 양성인 다핵세포의 형성 및 파골세포전구세포 배양 후 흡수면적을 측정함으로써 관찰하였다. Angiopoietin-2는 조골세포의 세포생존률 및 염기성 인산분해효소 활성을 증가시켰으며, gelatinase와 nitric oxide 생성의 증가시켰다. 또한 angiopoietin-2는 파골세포 생성 및 활성을 감소시켰다. 따라서 angiopoietin-2는 골수의 미세환경에서 세포의 조절작용을 하는 단백질로 여겨진다.

Keywords

References

  1. Canalis E, McCarthy T, Centrella M. Growth factors and the regulation of bone remodeling. J Clin Invest 1988;81:277-281 https://doi.org/10.1172/JCI113318
  2. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilate remodeling, ossification and angiogenesis during endochondral ossification. Nature Med 1999;5:623-628 https://doi.org/10.1038/9467
  3. Horner A, Bishop NJ, Bord S, et al. Immunolocalisation of vascular endothelial growth factor (VEGF) in human neonatal growth plate cartilage. J Anat 1999;194:519-524 https://doi.org/10.1046/j.1469-7580.1999.19440519.x
  4. Ryan AM, Eppler DB, Hagler KE, et al. Preclinical safety evaluation of rhuMabVEGF, an angiangiogenic humanized monoclonal antibody. Toxicol Pathol 1999;27:78-86 https://doi.org/10.1177/019262339902700115
  5. Clavel G, Bessis N, Boissier MC. Recent data on the role for angiogenesis in rheumatoid arthritis. Joint Bone Spine 2003;70:321-326 https://doi.org/10.1016/S1297-319X(03)00088-5
  6. Harper J, Klagsbrun M. Cartilage to boneangiogenesis leads the way. Nature Med 1999;5:617-618 https://doi.org/10.1038/4694
  7. Davis S, Aldrich TH, Jones PF, et al. Isolation of agniopoietin-1, a ligand for the TIE1 receptor, by secretion-trap expression cloning. Cell 1996;87:1161-1169 https://doi.org/10.1016/S0092-8674(00)81812-7
  8. Asahara T, Chen DH, Takahashi T, et al. Tie-2 receptor ligands, angiopoietin-1 and angiopoietin-2 modulate VEGF-induced postnasal neovasculaisation. Circulation Res 1998;83:233-240 https://doi.org/10.1161/01.RES.83.3.233
  9. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997;277:55-60 https://doi.org/10.1126/science.277.5322.55
  10. Kim I, Kim JH, Ryu YS, Liu M, Koh GY. Tumor necrosis factor-alpha upregulates angiopoietin-2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2000;269:361-365 https://doi.org/10.1006/bbrc.2000.2296
  11. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for Tie2 receptor, during embryonic angiogenesis. Cell 1996;87:1171-1180 https://doi.org/10.1016/S0092-8674(00)81813-9
  12. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 1999;79:213-223 https://doi.org/10.1111/1523-1747.ep12500063
  13. Yuan HT, Suri C, Yancopoulos GD, Woolf AS. Expression of angiopoietin-1, angiopoietin-2, and the tie2 receptor tyrosine kinase during mouse kidney maturation. J Am Soc Nephrol 1999;10:1722-1736
  14. Horner A, Bord S, Kelsall AW, Coleman N, Compston JE. Tie2 ligand angiopoietin-1 and angiopoietin-2 are coexpressed with vascular endothelial cell growth factor in growing human bone. Bone 2001;28:65-71 https://doi.org/10.1016/S8756-3282(00)00422-1
  15. Siffert RS. The role of alkaline phosphatase in osteogenesis. J Exp Med 1951;93:415-422 https://doi.org/10.1084/jem.93.5.415
  16. Fauran-Clavel MJ, Oustrin J. Alkaline phosphatase and bone calcium parameters. Bone 1986;7:95-99 https://doi.org/10.1016/8756-3282(86)90680-0
  17. Nijweide PJ, Burger EH, Feyen JHM. Cells of bone:Proliferation, differentiation, and hormonal regulation. Physiol Rev 1986;66:855-886 https://doi.org/10.1152/physrev.1986.66.4.855
  18. Matrisian LM. The matrix-degrading metalloproteinases. Bioessays 1992;14:455-463 https://doi.org/10.1002/bies.950140705
  19. Kleiner DE, Stetler-Stevenson WG. Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 1999;43:S42-S51 https://doi.org/10.1007/s002800051097
  20. Galis ZS, Muszynski M, Sukhova GK, et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzyme required for extracellular matrix digestion. Circ Res 1994;75:181-189 https://doi.org/10.1161/01.RES.75.1.181
  21. Johnson JL, van Eys GJ, Angelini GD, George SJ. Injury induces dedifferentiation of smooth muscle cells and increased matrix-degrading metalloproteinase activity in human saphenous vein. Arterioscler Thromb Vasc Biol 2001;21:1146-1151 https://doi.org/10.1161/hq0701.092106
  22. Hu B, Guo P, Fang Q, et al. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. PNAS 2003;100:8904-8909 https://doi.org/10.1073/pnas.1533394100
  23. Das A, Fanslow W, Cerretti D, Warren E, Talarico N, McGuire P. Angiopoietin/Tek interactions regulate mmp-9 expression and retinal neovascularization. Lab Invest 2003;83:1637-1645 https://doi.org/10.1097/01.LAB.0000097189.79233.D8
  24. Danziger R, Zuckerbraun B, Pensler J. Role of nitric oxide in the regulation of osteoblast metabolism. Plastic and Reconstruc Surg 1997;100:670-673 https://doi.org/10.1097/00006534-199709000-00020
  25. Takahashi N, Yamana H, Yoshiki S, et al. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinol 1988;122:1373-1382 https://doi.org/10.1210/endo-122-4-1373
  26. Takahashi N, Akastu T, Sasaki T, et al. Induction of calcitonin receptors by 1$\alpha$,25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinol 1988;123:1504-1510 https://doi.org/10.1210/endo-123-3-1504
  27. Sasaki T, Takahashi N, Higashi S, Suda T. Multinucleated cells formed on calcified dentin from mouse bone marrow cells treated with 1$\alpha$,25-dihydroxyvitamin D3 have ruffled borders and resorb dentin. Anat Rec 1989;224:379-391 https://doi.org/10.1002/ar.1092240307
  28. Minkin C. Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 1982;34:285-290 https://doi.org/10.1007/BF02411252