99

극초음속 공기흡입 추진기관 개발의 국제 동향

Part II: 세계적인 스크램제트 개발 프로그램

원수희, 정인석 서울대학교 항공우주공학과 최정열 부산대학교 항공우주공학과

International Activities of the Developments of Hypersonic Air-breathing Engines

Part II: Worldwide Scramjet Development Program

Su-Hee Won, In-Seuck Jeung and Jeong-Yeol Choi

I. 서 론

1990년대 초반 걸프전 이후, 국제 정치 환경의 변화에 따라 전략, 전술적 측면에서 극초음속 추 진기관의 새로운 용도가 제기되기 시작하였다. 스크램제트 엔진을 사용한 극초음속 비행체는 순 항속도 마하 10으로 세계 어느 곳도 2시간 이내 에 도달할 수 있으며, 이는 현재 이용되는 고 운 동에너지 무기 체계의 두 배 이상의 속도이다. 따라서 군사적으로는 고 운동에너지 및 장거리 신속 대응을 위한 유도 및 항공 무기 체계로서 고려되고 있으며, 이를 바탕으로 한 초고속 민간 항공기 및 저비용 우주 발사체의 개발이 예상되 고 있다. 인공위성 및 우주선을 지구 저궤도에 진입시키기 위하여 대기권 내를 비행하는 동안 대기 중의 산소를 산화제로 사용하는 공기흡입 추진기관을 이용할 경우, 로켓 발사체의 추진제 에 함유된 막대한 양의 산화제를 대기 중의 산소 로 대체하게 되어 비행체 총중량의 상당부분이 감소되며, 이를 화물 중량으로 환산하면 발사 비 용을 현재의 1/10~1/100 이하 수준 까지도 절감 할 수 있을 것으로 예상된다.

과학 기술 전반의 발달에 따라 성숙된 기반 기 술을 바탕으로 1990년대 이후에는 새로운 고속 추진기관 기술이 상당한 성장을 이루었다. 특히 지상시험 장비 및 지상시험을 검증하는데 사용할 수 있는 비행시험 기술의 성과는 괄목할 만하며, 이러한 노력은 2004년 X-43A 시험기에 의한 항 공기 최고속도 경신 등 여러 사례에서 성과를 보 이고 있다. X-43A가 마하 7의 속도로 스크램제트 성능을 시범해 보이기 전까지 마하 6 이상의 비 행성능을 보여준 추진기술은 로켓추진이 유일하 였다. 이러한 성공 사례를 계기로 국제적인 스크 램제트 개발이 더욱 활성화 되고 있으며, 스크램 제트 추진기관이나 극초음속 비행체가 더 이상 꿈이 아니라 가까운 장래에 실용화될 것으로 여 겨져 세계 각국의 주목을 받고 있다.

현재 선진 각국에서는 실용적인 스크램제트 개 발 능력을 구축하기 위하여 많은 연구가 진행되 고 있으며, 이를 바탕으로 새로운 세대의 산업 및 군사적 능력을 확보하고자 노력하고 있다. 본 논문은 앞서 초음속 공기흡입 추진기관의 개념 및 스크램제트 추진기관의 개발사에 대해 정리한 논문의 속편으로 최근 선진국들의 스크램제트 개 발 프로그램 및 국내 연구 동향을 살펴봄으로써 스크램제트 엔진의 국내외 기술 현황을 파악하고 자 한다.

Ⅱ. 선진국의 최근 개발동향

2.1 미 국

미국은 NASA MSFC를 중심으로 NGLT 프로 그램을 통해 제 3세대 발사체 개발을 주도하고 있다[1]. 제 3세대 발사체 시스템은 현재보다 약 1/100의 발사비용과 10,000배 이상의 향상된 안 전성을 목표로 하고 있다. 주요 연구 분야는 추 진분야와 동체분야로 나뉘며, 추진분야에서는 제 3세대 발사체에 적용가능성이 가장 큰 극초음속

Fig. 2. Mission profile of X-43A and an artist's rendering of flight demonstrator

공기흡입 추진분야에 집중적인 연구가 이루어지 고 있다. 극초음속 공기흡입 추진분야 중에서는 스크램제트, RBCC, TBCC 등이 각각 독립적으로 연구되고 있다. 여기에서는 NASA의 Hyper-X를 비롯해 공군과 DARPA(Defence Advanced Research Projects Agency)의 FALCON과 해군과 DARPA 의 HyFly 등에 관한 조사를 통해 미국의 극초음 속 비행체 연구진행을 살펴보고자 한다.

1996년 시작된 Hyper-X 프로그램은 공기흡입 극초음속 비행을 실현하기 위한 장기 개발 연구 과제로서, 공기흡입식 극초음속 비행기술의 입증 과 개발을 목표로 한다[2,3]. 첫 번째 비행시험모 델인 X-43A는 마하 7과 10에서 약 10초간 동력 비행을 시현하며, 연료로는 기체 수소를 이용한 다. 마하 7의 동력 비행 시험을 위한 2001년 6월 의 첫 비행은 고도 24,000 feet에서 발사 후 5초 간 자유낙하 한 다음 고도 95,000 feet까지 상승 할 예정이었으나 발사 직후에 발생한 롤 진동 (roll oscillation)에 의해 비행체가 비정상적인 제 어상태에 들어갔다. 발진 13.5초 후 고도 22,000 feet에서 좌현 엘러본(elevon)에 발생한 구조적 과부하로 인해 X-43A는 계획된 궤도를 완전 이 탈하게 되었으며, 그 결과 발진 48.6초 후 비행 안전장치(range safety)에 의해 파괴되었다. 2004

년 3월 27일의 두 번째 발사는 성공적이었다. B-52 폭격기의 우익 아래에서 Pegasus 로켓의 선 두부에 장착되어 발사된 실험체는 5초간 자유낙 하 후 가속되어 마하 7의 속도 및 95,000 feet의 고도에 이르게 된다. 기체의 수평비행 상태가 되 는 약 94초 경 X-43A는 분리되고 이후 약 10초 간 동력비행 시험을 수행하였다. 두 번째 발사에 서는 첫 번째 비행 시험에 비해 몇 가지 구조적 개선과 제어시스템의 개량, 재설계된 자동 파일 럿, 경량화된 로켓 모터, 향상된 분석모델 등이 통합되어 반영되었다. 또한 두 번째 비행은 첫 번째 비행이 고도 25,000 feet에서 발사된데 비해 천음속에서 항공역학적 부하를 줄이고 구조와 제 어시스템의 마진을 늘리기 위해 40,000 feet 고도 에서 발사되었다. 세 번째 비행시험은 2004년 11 월 16에 수행되었으며, 마하 9.8의 동력비행 시험 을 성공적으로 수행하였으며, 이로 인해 스크램 제트 연구는 더욱 활성화될 것으로 기대된다. X-43A 시험 비행체의 구체적인 제원은 Fig. 1과 같으며 임무형상(mission profile)과 비행 상상도 는 Fig. 2에 나타내었다.

X-43C는 미 공군의 HyTech 프로그램에 의해 개발되고 있는 스크램제트 엔진의 테스트를 위해 제작될 비행 시험체이다[4,5]. 지금까지 설계된

Fig. 3. Ground demonstrator engine of HyTech

Fig. 4. GDE installed in GASL

Fig. 5. X-43C vehicle

대부분의 스크램제트 엔진은 수소를 연료로 사용 하지만 HyTech 엔진은 작동비행체를 추진하는데 있어서 효과적인 재래식 등유형태의 탄화수소 연 료를 사용한다. 엔진의 냉각을 위한 냉매로 연료 를 사용하며, 이러한 냉각시스템은 장쇄 탄화수 소(long-chain hydrocarbon)가 연소하기 쉬운 단 쇄 탄화수소(short-chain hydrocarbon)가 되도록 하는 역할도 한다. X-43C 비행 프로그램은 탄화 수소 계열의 연료를 사용하여 수소 연료를 사용 하는 X-43A 보다 긴 약 5분간의 동력 비행을 하 며, 이를 통해 추진 시스템의 성능, 이중모드 램 제트/스크램제트 작동 여부 및 보다 넓은 비행 가능영역 확인을 위한 기동비행 등을 테스트 한 다. 또한 연료로 탄화수소를 사용함으로 인해 연 소기 길이가 증가하며 따라서 동체의 크기도 X-43A에 비해 약 4 inch 증가하며(X43A: 12 inch, X43C : 16 inch) 수소 연료를 사용할 때보 다 더욱 많은 공기 포획을 위해서 엔진의 크기도 증가한다. X-43C의 비행시험은 X-43A 프로그램 에 의해 개발된 기술을 토대로 하고 있으며, X-43A에 의해 입증된 동체구조, 단분리, 비행관 리, 데이터 시스템 등과 같은 개별 하부 시스템 들을 많이 사용한다. X-43C는 약 2008년에 시험 비행 할 예정이다.

X-43C는 미 공군의 HyTech 프로그램에 의해 개발될 스크램제트 엔진을 사용하며 두 단계에 걸쳐 지상실험이 이루어진다. 첫 지상시연엔진 (GDE 1, Ground Demonstrator Engine 1)은 하 나의 유로를 가진 고정형상으로 엔진의 구조적 검증과 성능 측정 및 엔진개발의 리스크 감소를 통해 X-43C 엔진 개발을 지원한다. 이어지는 GDE 2는 X-43C의 비행체 형상을 고려하여 제작 되며 추진시스템의 검증과 엔진의 열 문제 및 가 변형상 성능의 확인 등을 목적으로 하고 있다. X-43C 엔진은 HyTech 프로그램에 의해 개발된 세 개의 엔진 모듈을 적용하여 비행시험을 수행 한다. HyTech 프로그램의 지상실험 모델과 과정 및 X-43C의 비행 상상도를 Fig. 3-Fig. 5에 각각 나타내었다.

X-43B는 X-43 계열 중의 세 번째 비행체이며 (X-43C가 먼저 비행하게 된다.) 최초의 재사용 비행체가 될 예정이다[5,6]. 복합 사이클 동력을 사용해 다른 X-43 기체들과 달리 Pegasus 로켓 에 의존하지 않는 X-43B는 TBCC와 RBCC 기관 중 하나를 탑재할 예정이다. 2006년까지 X-43B에 사용될 엔진의 선택이 이루어지며 약 2010년경에 비행 시험이 이루어질 예정이다. TBCC는 NASA GRC(Glenn Research Center)를 중심으로 RTA(Revolutionary Turbine Accelerator) 프로그 램이 진행되고 있으며, RBCC의 경우 NASA MSFC를 중심으로 ISTAR(Integrated System Test of an Airbreathing Rocket) 프로그램을 통 해 개발이 진행되고 있다.

TBCC 시스템은 비행 마하수 4에 이르기까지 는 탄화수소 연료를 사용하는 터보제트 또는 터 보램제트 엔진을 사용하며, 마하수 7-8까지는 탄 화수소 연료를 사용하는 램제트 또는 스크램제트 엔진을 사용한다. 한편 RBCC의 경우 비행 마하 수 3-4까지는 로켓을 이용해 초기가속을 하며, 마하수 7-8까지는 탄화수소를 이용하는 램제트 또는 스크램제트 엔진을 이용한다. 마하수 12-15 에서는 TBCC와 RBCC 모두 수소연료를 사용한

Fig. 6. ISTAR operating modes

다. Fig. 6-Fig. 7에 ISTAR의 비행속도에 따른 엔 진 작동 모드 및 엔진 형상을 각각 나타내었다.

한편 Hyper-X 프로그램 외에도 미 공군과 DARPA는 최근 2003년 FALCON(Force Application and Launch from CONtinental United States)) 라는 극초음속 추진 시스템 개발 프로그램은 시 작하였다. 미 공군은 현재의 폭격기로는 대륙 간 임무가 주어졌을 경우 조종사들에게 커다란 부담 이 될 뿐만 아니라 신속하고 효과적인 힘의 투사 를 위해서 미국 본토로부터 세계 어느 곳이든 12 시간 내에 공격할 수 있는 수단을 가지고 싶어 한다. 그러나 현재까지 공격 목표 식별 능력 및 정확도 관련 기술에서는 큰 진전이 있어왔으나 방호 능력이 우수한 지하 목표물을 빠른 시간 내 에 공격하는 데는 여전히 한계가 존재한다. 이에 미 공군과 DARPA는 FALCON 프로그램을 통해 이러한 한계를 극복하고자 한다. FALCON은 크 게 2010년까지 SLV(Small Launch Vehicle)를 개 발하는 단기과제와 HCV(Hypersonic Cruise Vehicle)를 2025년까지 개발하는 장기과제로 나 뉘어 진다.

단기과제는 다시 3단계로 나뉘어 진행된다. 2003년 3분기부터 2004년 2분기까지의 1단계에서 는 시스템 정의를 목표로 2가지 과제를 수행한 다. 첫 번째 과제는 SLV 연구그룹에서 수행되며, SLV에 대한 개념설계, 성능예측, 비용산출, 개발 및 시연계획 등을 포함한다. 두 번째 과제는 HWS (Hypersonic Weapon System) 연구그룹에서 수행 되며, CAV(Common Aero Vehicle), ECAV (Enhanced CAV), HCV를 포함하는 FALCON 프로그램의 극 초음속 무기체계에 소요되는 핵심 기술에 대한 이해, 개념설계, 운용개념 및 시연계획 등을 목표 로 한다. CAV는 1,000 파운드의 탄두를 3,000 해

Fig. 7. ISTAR configuration

리 떨어진 목표물까지 타격할 수 있는 비동력 비 행체로서 기동이 가능한 극초음속 활공 비행체이 며, CAV의 발사에 필요한 고도 및 속도까지 운 반하는 저비용 신속 발사체가 SLV이다. ECAV는 보다 넓은 사정거리 및 개선된 기동성을 가지는 CAV의 진보된 형태이다. HCV는 기존 활주로를 이용해 수평 이착륙이 가능한 재사용 비행체로 서, 두 시간 이내에 9,000 해리 떨어진 목표물을 공격할 수 있으며, CAV와 순항 미사일을 포함해 12,000 파운드의 무장을 탑재할 수 있다. 2004년 2분기부터 2007년 3분기까지의 2단계는 설계 및 개발을 목표로 역시 2가지 과제로 구성되어 있 다. SLV 연구그룹에서 수행되는 첫 번째 과제는 SLV 작동 발사체의 시연과 비행시험을 목표로 하며, HWS 연구그룹에서 수행되는 두 번째 과 제는 CAV 비행시험과 ECAV 및 HCV관련 주요 기술 개발과 시연 시스템의 개발을 목표로 한다. 2단계에서는 또한 운반체인 CAV와 발사체인 SLV의 통합 및 SLV/CAV 통합기체의 비행시험 을 위해 SLV 연구그룹과 HWS 연구그룹 간의 개발방향 및 정보공유이 이루어지게 된다. 2단계 개발과정을 통해 SLV 발사체 및 CAV 운반체의 개별 비행시험과 ECAV 및 HCV 개발 핵심기술 등과 같은 극초음속 비행기술의 성과에 따라 3단 계의 진행 여부가 결정된다. 2007년 3분기부터 2009년까지의 3단계는 단일과제로 구성되어 있으 며, 무기체계의 시연을 목표로 한다. 여기서는 통 합된 형태의 SLV/CAV, SLV/ECAV에 대한 비 행시험과 함께 ECAV와 HCV 시험체의 비행시 험을 통해 시스템 및 기술 성능의 검증이 이루어 진다. 또한 HCV 개발에 핵심이 되는 많은 재사 용 기술에 대한 연구가 수행되며 이를 바탕으로 장기적으로 2025년까지 재사용 가능한 HCV 개

Fig. 8. SLV of FALCON

Fig. 9. HCV of FALCON

Fig. 10. Schematic of HyFly

발에 바탕이 될 것으로 기대된다. FALCON을 통 해 개발된 SLV와 HCV의 상상도를 Fig. 8-Fig. 9 에 각각 나타내었다.

미 공군과 NASA의 극초음속 추진 시스템 개 발이 일회용 및 재사용 비행체를 병행하여 목표 삼고 있는데 반해 미 해군은 미사일에 적용 가능한 극초음속 추진 시스템의 개발에 집중하여왔다. 미 해군과 DARPA는 2002년 HyFly(Hypersonic Flight) 프로그램을 시작하였다. 극초음속 장거리 미사일용 DCR 추진기술을 개발하고 시현하기 위한 이 프로그램의 기원은 1950년대까지 거슬러 올라간다. 1950년대 중반부터 미 해군은 JHU (Johns Hopkins University)/APL(Applied Physics Laboratory)의 ERI 개발 프로그램을 시작으로 극 초음속 추진 시스템 개발에 대한 지원을 시작한 이래 1960년대 후속인 덕트형 스크램제트 엔진의 개발 프로그램인 SCRAM으로 이어졌다. IHU/APL 은 1970년대 SCRAM 개념의 후속으로 DCR을 고안하였으며 이는 극초음속 WADM(Wide-Area Defence Missile) 프로그램으로 발전하게 된다. 1990년대 접어들어 DARPA는 저비용의 공중발 사용 극초음속 미사일의 개발을 위해 ARRMD (Affordable Rapid Response Missile Demonstrator)

Fig. 11. Booster acceleration test of HyFly

에 착수하였으며 이 프로그램은 DCR 기술을 추 진 시스템으로 채택하였고, 이것이 HyFly 프로 그램의 전신이다.

HyFly는 극초음속 장거리 미사일 추진기술 개 발 프로그램으로 마하 6.5의 속도로 600 해리를 비행할 수 있는 액체 탄화수소 연료를 사용하는 미사일 개념을 입증하기 위해 4년간 수행될 예정 이다. 2002년 5월 30일 NASA의 LaRC에서 수행 된 지상시험에서 90,000 feet 상공에서 마하 6.5 로 운용되는 상황을 모사하는 실험에 성공을 거 두었으며, 이 실험에서 DCR 엔진은 비행체에 완 전히 통합된 형태로 토마호크 순항 미사일에 사 용하는 것과 동일한 것으로 선상에서 사용되는 IP-10을 연료로 사용하였다. 현제 실물 크기와 비행 중량의 엔진에 대한 지상시험 및 축소 크기 미사 일에 대한 탄도 비행이 진행 중이며, 2005-2007 년 사이 5회에 걸쳐 마하 4 및 마하 6의 순항 비 행 시험이 실시될 것으로 예상된다. HyFly의 개 략도 및 2005년 8월 수행된 부스터 가속 비행시 험을 Fig. 10-Fig. 11에 나타내었다.

이 외에도 미국은 정부기관 및 산업체를 중심 으로 극초음속 유도무기 시스템, 순항 항공기 및 저 비용의 우주 발사체 등에 적용가능성이 큰 극

Fig. 12. Hypersonic Flying Laboratory and launch stand for HFL 'Kholod'

초음속 공기흡입 추진분야에 많은 연구가 이루어 지고 있다.

2.2 러시아

러시아의 스크랩제트 연구 활동은 1950년대 말 부터 시작되었으며, 이러한 연구 활동은 1980년 대와 1990년대에 가속되기 시작하였다. 여기서는 CIAM(Central Institute of Aviation Motors)의 HFL(Hypersonic Flying Laboratory)를 중심으로 러시아의 극초음속 비행체 연구진행을 살펴보고 자 한다.

CIAM은 1991년부터 축대칭 이중모드 스크램 제트 엔진의 비행시험을 수행하였다[7,8]. 1991년 11월에 첫 비행시험이 수행되었으며 최대 마하수 는 5.5에 이르렀다. 러시아와 프랑스의 공동연구 로 이루어진 1992년 11월과 1995년 3월의 두 번 째와 세 번째 비행시험에서는 최대 마하수가 각 각 5.35와 5.8이었으며, 세 번째 비행시험에서는 탑재 파워 시스템의 고장으로 인해 스크램제트 엔진의 작동에 실패하였다. 1998년 2월에 수행된 네 번째 비행시험은 CIAM-NASA의 공동연구로 서 램-스크램 이중모드 작동 및 완전한 초음속 연소 모드의 스크램제트 작동 범위의 연구를 위 해 마하수 3.5-6.4까지 약 77초간 비행시험이 수 행되었다. 이러한 일련의 비행시험으로 CIAM은 비행중의 초음속 연소현상을 증명하려 하였으며, 더불어 지상시험 및 비행시험 간의 상관관계를 도출하여 스크램제트 엔진의 설계 및 개발 기술 을 확립하고자 하였다. 극초음속 비행 실험장치 인 HFL Kholod는 SA-5 지대공 미사일의 선두부 에 부착되어 비행시험이 수행되었으며, 이는 SA-5 미사일 궤적이 극초음속 비행시험 요구조 건에 부합하였기 때문이다. HFL는 연료 공급장 치, 제어장치, 계측장치 등으로 구성되어 있으며, 자세한 HFL의 구성 및 발사장치는 Fig. 12에 나 타내었다.

1998년 2월에 수행된 CIAM-NASA의 공동 비 행시험 모델을 중심으로 스크램제트 엔진의 제원 을 살펴보면 다음과 같다. HFL의 선두부에 장착 된 수소 연료의 이중모드 스크램제트 엔진은 축 대칭 3-충격파 공기 흡입구, 동축 재생냉각 연소 실, 저팽창 환형 노즐로 구성되어 있다. 스크램제 트 엔진은 비행고도 50,000-115,000 feet 사이에서 마하 3.5-6.4로 비행하도록 설계되었으며, 전체 비행 동안 부스터 로켓이 실험체에 부착되어 있 다. 공기흡입구는 원뿔형태의 고정형상 흡입구로 서 각각 10°, 15°, 20° 반각을 가진 세 개의 경사 영역으로 구성되어 있으며, 각 영역에서 발생한

Fig. 15. PREPHA

Verlah spannty Generation channer Hesister funnsier Frei Beller Hesister funnsier Keiner verner Hesister funnsier Frei Beller Hesister funnsier Hesister funnsier Frei Beller Hesister funnsier Hesister funnsier

Fig. 17. WRR: PIAF

Fig. 18. JAPHAR: Generic model

Fig. 19. JAPHAR: Aerodynamic model

Fig. 20. Intake

Fig. 16. WRR: Promethée

Fig. 22. Nozzle

경사 충격파는 마하 6의 조건에서 카울에 부착되 도록 설계되어 있다. 공기 흡입구의 형상 및 치 수는 Fig. 13에 나타나 있다. 연소기는 Fig. 14에 Ⅰ, Ⅱ, Ⅲ으로 표시된 것과 같이 세 단계의 연료 분사 장치를 가지도록 설계되어 있다. 축대칭 형 상에 따른 각 단계별 연료 분사장치의 위치는 Fig. 14에 자세히 표시되어 있다. 각 연료 분사 단계에서 연료는 공동(cavity)이나 후방단(backward step)과 같은 화염유지기구(flameholder)에 경사 각을 가진 형태로 분사된다. I 단계에서는 지름 1.7 mm의 42개 분사기로부터 유동방향에 대해 30 의 기울기로 연료가 분사된다. Ⅱ단계 및 Ⅲ 단계의 경우 지름 2.1 mm의 42개 분사기로부터 유동방향에 대해 각각 30°, 45°의 기울기로 연료 가 분사되며, 두 개의 점화장치에 의해 화염의 점화 및 유지가 이루어진다. 또한, Ⅱ단계와 Ⅲ 단계는 마하 3.5-5 사이에서 아음속 연소 및 초 음속 연소가 발생하도록 설계되어 있으며, I 단 계에서는 마하 5 이상에서만 초음속 연소가 발생 하도록 설계되어 있다. 위와 같은 비행시험을 통 해 CIAM-NASA는 이중모드 스크램제트 엔진 작 동, 연료냉각 엔진 구조, 엔진 구조물의 온도계측 및 비행조건의 함수로서 연료 배분 및 유량의 능 동제어 등과 같은 구체적인 현상들을 증명하고자 하였다.

CIAM-NASA의 1998년 비행 시험을 통해 지상 시험과 비행시험 데이터 간에 상당한 부합이 이 루어지고 있음을 확인할 수 있었다. 그러나 비행 중 초음속 연소 조건을 얻는데 여전히 불확실성 이 남아있으며, 더불어 축대칭 형상의 스크램제 트 형상은 실질적인 비행체의 추진시스템으로는 그다지 효과적이지 못하다는 결론을 얻게 되었 다.

2.3 프랑스

프랑스는 미국 NASA의 HRE 프로그램에 자극 받아 ESOPE(Etude de Statoréacteur comme Organe de Propulseur Evolué) 프로그램을 1966 년 출범시켰다. ESPOE 사업은 마하 7의 비행시 험 프로그램으로 이중모드 스크램제트를 실증해 보이고자 하였으나, 1970-1972년 사이에 두 차례 에 걸쳐 일련의 지상시험에만 한정되었고, 미사 일 응용을 지원하기 위한 IRR(Integrated Rocket Ramjet) 엔진 개발이 선호됨에 따라 종결되었다. 이후 프랑스의 스크램제트 개발활동은 1980년대 말 PREPHA로 재부상하게 된다. 수소연료 스크 램제트 엔진 기술의 개발이 목표였던 PREPHA 프로그램은 1994-1999년 사이에 Chamois 연소기 (Mach 6)와 단일분사 지주(single-injection strut) 연소기(Mach 4-7.5)에 대한 연소 시험을 수행하 였으며, 1990년대에 WRR(1993-2003), JAPHAR (1997-2002), Promethée (1999-2002) 등과 같은 프 로그램을 통해 스크램제트 기술 개발을 지속하였 다[9,10]. 프랑스와 러시아의 공동 프로그램 WRR 은 재사용형 우주발사체 응용을 위해 1993년에 처음 구상되었다. WRR의 시제형 엔진은 가변식 구조 이중모드 램제트로 회전식 카울(Promethée) 과 병진식 카울(PIAF)의 유입구가 병행 연구되었 다. 이 비행체는 마하수 2-12 범위의 속력에서 날도록 설계되어 있으며, 초음속 영역에서는 탄 화수소를 연료로 사용하며 극초음속 영역에서는 수소로 전환된다. PREPHA 및 WRR의 개념도를 Fig. 15-Fig. 17에 나타내었다.

PREPHA와 Sänger 후속으로 독일과 협력하여 1997년 시작된 JAPHAR는 이전의 수소 연료 PREPHA 연구를 기초로 개발된 고정구조 이중 모드 램제트 엔진을 채택하고 있다[11]. JAPHAR 는 마하 4-8에서 작동하는 수소연료 이중모드 램 제트의 개발을 목표로 하였으며, 이 과정에서 공 기열역학에 대한 수치해석 코드의 개량 및 검증 뿐만 아니라 장차 수행될 비행시험에 대한 개념 을 개발하고자 하였다. 2000-2002년 사이 마하수 4.9, 5.8, 7.6에 대한 지상 시험이 수행되었으며, 이를 통해 아음속, 아음속-초음속 천이, 초음속 연소 등을 확인하였다. Fig. 18-Fig. 22에 JAPHAR의 전체외형, 공력 모델, 공기흡입구, 연 소기, 노즐을 각각 나타내었다.

1999년 착수된 Promethée 프로그램은 마하수 2-8의 공대지 미사일의 개발을 위해 탄화수소 연 료의 가변구조 이중모드 램제트 개발을 목표로 하였다. 탄화수소 연료 이중모드 램제트 관한 기 술을 얻기 위해 시작된 이 프로그램은 극초음속 비행체에 관한 체계연구 및 정의, 연소실 설계 및 최적화, 비행시험을 예비한 지상시험 등이 포 함되어 있다.

위에서 언급된 다양한 스크램제트 엔진의 비행 시험을 위해 프랑스는 2003년 LEA를 시작하였다 [12]. 이는 이중모드 램제트 추진 비행체를 마하 4-8의 속도에서 비행시험하기 위한 프로그램이 다. 이 계획을 통해 스크램제트의 유효 추력을 얻기 위해 요구되는 설계 마진을 예측하기 위한 지상 개발 방법론과 비행검증을 얻을 수 있을 것 이다. 추진 시스템으로는 고정식 구조(JAPHAR) 또는 가변형 구조(Promethée/PIAF) 가운데 선택 될 것이다. 비행시험은 항공기에서 발사된 시험 체가 고체 부스터를 이용해 요구되는 마하수까지 가속한 후 분리되며, 분리된 후 약 20-30초간의 동력 및 무동력 비행시험을 수행하게 된다. 2010-2012년 사이 6회에 걸쳐 비행시험이 계획되 어 있으며, 시험용 비행체는 비회수형이다.

2.4 일 본

일본의 스크램제트 개발활동은 1980년대 말과 1990년대 초부터 복합 사이클 엔진 기술개발을 중심으로 수행해 왔다. 고속 항공기 및 재사용 우주수송 추진 시스템의 필요성에 의해 시작된 스크램제트 개발활동은 TSTO와 SSTO와 같은 시 스템 체계 연구와 함께 개별 시스템에 적합한 엔 진 개발을 병행하고 있다[13,14].

TSTO 비행체의 fly-back 부스터의 추진시스템 을 위해 개발되고 있는 ATREX 엔진은 아음속에 서 터보제트 엔진으로, 초음속 및 극초음속에서 ATR(Air Turbo Ramjet)으로 작동하는 복합 사이클 공기흡입 추진시스템이다. JAXA(Japan Aerospace Exploration Agency)의 ISAS(Institute of Space and Astronautical Science)를 중심으로 연구되고 있는 ATREX는 정지 상태부터 고도 35 km 및 마하수 6에 이르기까지 유효 추력을 발생시키도 록 설계되어 있으며 연료는 수소를 사용한다. ATREX는 확장 사이클(expander cvcle)로 작동되 는 ATR로서 엔진 내에 두 개의 열교환기가 존 재하는 특징을 가지고 있다. 예냉기(precooler) 또는 흡입구 공기 냉각기(intake air cooler)로 불 리는 첫 번째 냉각기는 흡입구에 존재하며 두 번 째 열교환기는 연소기 내에 존재한다. 예냉기를 거치는 액체 수소로 인해 흡입공기의 온도가 냉 각되며 이는 ATREX가 높은 비행 마하수에서도 작동 가능하게 한다. 두 개의 열교환기를 거친 액체수소는 기화되어 연소기로 들어가면서 익단 터빈(tip turbine)을 구동하여 흡입공기를 추가적 으로 압축한다. 또한 ATREX 엔진은 익단 터빈 을 채택함으로써 터보 기기의 소형화 및 경량화 가능하였다. 1/4 크기의 축소 가 모델 (ATREX-500)을 이용하여 1990년 이후로 해면고 도에 해당하는 정적 시험을 수행해 왔으며, 1992 년부터는 축대칭 가변구조 흡입구 및 가변구조 플러그 노즐 등을 고려하여 풍동시험을 수행해 왔다. TSTO 비행체 및 구체적인 ATREX 엔진의 작동 개념을 Fig. 23와 Fig. 24에 나타내었다.

JAXA의 KSPC(Kakuda Space Propulsion Center)는 Fig. 25과 Fig. 26에 나타나 바와 같이 복합 사이클 엔진을 중심으로 연구를 수행하고 있다. 복합 사이클 엔진은 이젝터제트, 램제트, 스크램제트, 로켓 모드로 구성되어 있으며, 엔진

구성요소, 엔진 시스템, RJTF(Ramjet Test Facility) 에서의 실험적 연구 등을 통해 SSTO 우주 비행 체 추진시스템의 개발을 목표로 한다. 복합 사이 클 엔진의 작동 모드는 Fig. 27에 나타난 바와 같이 초기 이륙으로부터 마하 3까지는 이젝터제 트, 마하 3-6 사이에는 램제트, 마하 6-10 사이에 서는 스크램제트, 그 이상에서는 다시 로켓 추진 모드 순으로 변환된다. 복합 사이클 엔진의 비추 력(Isp) 및 액체 수소 연료를 이용한 재생냉각 요 구조건 등에 대한 개념연구가 수행되었으며, 1980년대 이후의 스크램제트 엔진 시스템에 관한 연구 활동 결과에 근거하여 제작된 각 구성요소 에 대한 실험이 RJTF에서 수행되었다. 이젝터제 트에 대한 공력 실험, 램제트 스크램제트 모드에 서의 연소 실험, 흡입구 공력 등이 여기에 포함 된다. 또한 동체통합 설계에 따른 효과 및 복합 사이클 엔진의 축소 모델에 대한 실험도 RITF에 서 수행되고 있다.

2.5 호 주

호주는 국제 컨소시움(6개국: 호주, 영국, 미국, 독일, 한국, 일본)을 구성하여 스크램제트 엔진의 비행시험 프로그램인 HyShot 수행하였으며, 세계 최초로 비행환경에서 초음속 연소를 확인하는데 성공하였다[15-17]. HyShot 프로그램은 Terrior-Orion의 2단 과학로켓을 이용하여 2차원 스크램 제트 엔진구조물을 고도 350km까지 쏘아올린 후 자유낙하 하는 Orion로켓의 선두부에 달려있는 스크램제트 엔진이 고도 35-23km 사이를 지나면 서 마하 7.6을 얻게 되는 구간에서 약 5초간 실

험이 수행된다. 3회에 걸쳐 비행시험이 시도되었 으며, 2001년 실시된 첫 번째 비행시험은 과도한 공력 부하로 인한 1단 로켓 꼬리날개의 파손으로 인해 실패하였다. 이후 2002년 6월 수행된 두 번 째 비행시험을 통해 스크램제트 엔진의 초음속 연소를 확인하였으며, 2006년 3월에는 영국 QinetiQ에서 개발된 모델 스크램제트를 탑재하 고 세 번째 비행시험을 성공적으로 수행하였다. 구체적인 비행궤적 및 실험과정은 Fig. 28에 나 타내었으며, 2002년 6월의 두 번째 비행시험에 사용된 스크램제트 엔진 모델은 Fig. 29에 나타 나 있다. 두 개의 스크램제트 엔진이 결합되어 있으며, 한쪽은 수소연료를 분사하는 동력시험을 다른 한쪽은 연료를 분사하지 않는 비동력시험을 수행하게 된다. 결합된 두 스크램제트 엔진에서 동력 및 비동력 실험이 수행되기 때문에 비행시 험의 경우 추력면을 제거하여 추력의 비대칭성을 해소하였다. 공기 흡입구는 18° 반각의 단순 쐐 기형태이며 뒤이은 연소실은 일정 단면적을 가진 다. 러시아의 Kholod 시험을 통해 일련의 마하 수에 걸쳐 이중모드 스크램제트 연소기의 자료를 얻은데 반해서 HvShot 비행실험에서는 단일 마 하수에서의 초음속 연소 자료를 얻을 뿐만 아니 라 광범위한 동압도 측정할 수 있었다. 또한 이 들 자료는 Fig. 30에 나타낸 지상시험 모델과 T4 충격파 풍동을 이용해 동일한 범위에서 얻은 지 상시험과 비교되었다. 이 프로그램을 통해 지상 시험을 통해 얻는 초음속 연소에 관한 이해는 비 행 중에 작동하는 단순한 초음속 연소기를 설계 하는데 충분하다는 것과 이러한 시험 접근법은

Fig. 28. HyShot mission profile

극초음속 비행시험을 수행하는 비용 측면에서 효 과적인 수단이 된다는 것을 보여주게 되었다.

Ⅲ. 국내 연구 동향

국내의 경우 현재 진행되고 있는 국가적 스크 램제트 개발 프로그램은 없으나, 국제공동연구 참여를 통한 스크램제트 관련 기술 습득과 함께 연구소 및 대학을 중심으로 스크램제트 엔진에 대한 기초연구를 수행하고 있다.

1990년대 중반부터 서울대에서 시작된 초음속 연소기 및 램가속기(Ram Accelerator)에 대한 수 치 연구를 시작으로[18-20], 1999년부터 ISL 연구 소(French-German Institute of Saint Louis)와의 램가속기에 관한 공동 연구가 진행되었다[21,22]. 1998년부터는 한국과학재단의 지원으로 기초 연 구가 시작되어 초음속 연소에 대한 기초 실험 및 수치해석이 진행되었으며[23], 2000년부터 일본의 University of Tokyo와의 공동연구에서 후방단을 가지는 2차원 초음속 연소기내의 아음속 연료분 사 연구에 참여하여 연소압력상승으로 인한 열적 질식과정 현상을 연구하였으며[24], 호주 ANU (Australian National University)와 모델 스크램 제트 엔진 내의 초음속 연소 실험에 참여하였고, 수치해석을 통해 스크램제트 엔진 내의 자발점화 메커니즘 연구하였다[25].

또한 2001년부터는 호주와 한국을 비롯한 6개 국 공동으로 HyShot I, II, III 스크랩제트 엔진 의 비행시험 프로그램에 참여하여왔다. HyShot I, II 프로그램에서는 2차원 스크랩제트 엔진의 공기흡입구 및 연소 유동장 해석을 수행하였으 며, 스크랩제트 엔진의 지상시험 및 비행시험에

Fig. 29. Flight test model

Fig. 30. Ground test model

참여함으로써 관련 자료를 확보 하였다.

한편, 2000년부터는 한국과학재단의 지원으로 부산대를 중심으로 인하대, 울산대와 충남대의 공동연구가 진행되어 연료공기 혼합 및 연소과정 에 대하여 2차원 및 3차원의 다양한 수치 해석과 초음속 내부 유동의 추력 측정 기법에 대한 기초 실험이 수행되었다[26-28]. 이후, 미 공군의 지원 을 받는 공동 연구에 의하여 스크램제트 엔진 내 의 연소 과정에 대한 비정상 해석이 수행되어 분 사제트의 비정상 거동에 의한 초음속 연소 불안 정이 최초로 연구되었으며[29], 열 분해된 탄화수 소 연료의 점화 특성에 대한 연구가 진행되고 있 다[30].

현재 진행 중인 국내 대학의 스크램제트 관련 연구는 서울대와 부산대의 연소 추진 그룹, 건국 대의 고속 공기역학 그룹의 활동이 활발히 진행 되고 있다. 서울대에서는 기존의 고속 연소 시험 장치 이외에 국가지정 연구실 사업을 통하여 Shock-tunnel을 이용한 극초음속 유동 및 초음속 연소 시험 장치를 구축하고 있으며, 부산대는 전 용의 대규모 병렬 컴퓨팅 시스템을 구축하여, 마 하수 2.5~3 정도의 램제트 엔진 연소과정 수치해 석, 지상시험 및 비행 마하수 8 정도의 스크램제 트 엔진 초음속 연소과정 해석, 비행 마하수 6 정도의 초폭광파 연소 램 가속기 연소과정 해석 등의 공동 연구를 수행하고 있다. 아울러 과학 재단의 지원으로 서울대와 공동으로 건국대에서 도 극초음속 공기 흡입구 관련 연구를 진행 중이 다.

한편 한국항공우주연구소, 국방과학연구소, 삼 성테크윈(주) 엔진부문 등과 같은 연구소 및 대 학을 중심으로 초고속 추진기관에 대한 연구가 수행되고 있다. 국방 분야에서는 전술유도무기에 적용 가능한 비행 마하수 3 정도의 램제트 엔진 으로부터 비행 마하수 6~8 정도의 스크램제트 엔진에 걸쳐서 관심을 보이고 있으며, 국방과학 연구소의 경우, 램제트 엔진을 중심으로 극초음 속 추진기기관에 대한 연구가 활발히 진행 중인 것으로 보인다. 한국항공우주연구소는 차세대 위 성운반체로서 스크램제트 엔진에 관심을 가지고 있으며, 러시아와의 국제협력을 통해 극초음속 비행을 목표로 하는 에어터보램제트 엔진의 지상 시험설비를 설계하고 이를 바탕으로 극초음속 지 상시험설비 구축을 계획하고 있다.

Ⅳ. 맺음말

1990년대 이후 스크랙제트 엔진의 지상시험 장 비 및 지상시험을 검증할 수 있는 비행시험 기술 의 진보에 힘입어 국제적인 스크램제트 개발 활 동이 크게 증가하였다. 미국은 정부기관 및 산업 체를 중심으로 다양한 개발프로그램을 통해 극초 음속 유도무기 시스템, 순항 항공기 및 저 비용 의 우주 발사체 등에 적용 가능한 통합된 형태의 스크램제트 엔진 개발에 주력하고 있다. 한편, 미 국을 제외한 러시아, 프랑스, 일본, 호주 등은 스 크랙제트 엔진의 구성품 단위의 지상시험을 통해 각 구성품의 성능 특성을 도출하고 이를 기반으 로 실물 엔진에 대한 비행 시험을 계획 또는 수 행하고 있다. 국내의 스크램제트 관련분야는 제 한적이나마 램제트 개발을 위한 기본적인 설계기 술, 제작기술에 대한 연구가 수행중인 상태이나, 성능시험장비의 한계로 인해 제한적인 성능시험 만을 수행할 수 있고, 대부분 해외 개발 프로그 램에 부분적으로 참여하여 기술을 습득하는 형편 이다. 따라서 시험장비 능력보강 및 스크램제트 엔진 개발을 위한 투자가 시급하고, 기초기술 개 발 및 심화를 위한 지속적인 개발프로그램의 수 행이 필요하다.

후 기

본 논문은 과학기술부의 국가지정 연구실 사업 M1050000072-05J000007210과 국방과학연구소의 기초연구과제 지원으로 진행되었으며 지원에 감 사드립니다.

참고문헌

1) Hueter, U., and McClinton, C. R., "NASA's Advanced Space Transportation Hypersonic Program", 11th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2002-5175, Sep. 2002.

2) McClinton, C. R., Rausch, V. L., Sitz, J., and Reukauf, P., "Hyper-X Program Status", 39th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2001-828, Jan. 2001.

3) Walter, C. E., Scott, D. H., Charles, E. C. Jr., and Robert, D. B., "Propulsion System Airframe Integration Issues and Aerodynamic Database Development for the Hyper-X Flight Research Vehicle", 14th International Symposium on Air Breathing Engines, ISABE Paper 99-7215, Sep. 1999.

4) Boudreau, A. H., "Status of the U.S. Air Force HyTech Program", International Symposium on Air Breathing Engines, ISABE Paper 2003-1170, Sep. 2003.

5) Engelund, W. C., Holland, S. D., Cockrell, C. E, Jr., and Bittner, R. D., "Propulsion System Airframe Integration Issues and Aerodynamic Database Development for the Hyper-X Flight Research Vehicle", International Symposium on Air Breathing Engines, ISABE Paper 1999-7215, Sep. 1999.

6) Sorre, L., "Towards a Low Risk Airbreathing SSTO Program - A Continuous Robust PREPHA Based TSTO", 9th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 99-4946, Nov. 1999.

7) Roudakov, A. S., Semenov, V. L., Kopchenov, V. I., and Hicks, J. W., "Future Flight Test Plans of an Axisymmetric Hydrogen-Fueled Scramjet Engine on the Hypersonic Flying Laboratory", 7th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 96-4572, Nov. 1996.

8) Voland, R. T., Auslender, A. H., Smart, M. K., Roudakov, A. S., Semenov, V. L., and Kopchenov, V., "CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test", 9th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 99-4848, Nov. 1999.

9) Bouchez, M., Falempin, F., Levine, V., Avrashkov, V., and Davidenko, D., "FrenchRussian Partnership on Hypersonic Wide Range Ramjets", *Journal of Propulsion and Power*, Vol. 17, No. 6, pp. 1177-1183, 2001.

10) Serre, L., and Falempin, F., "PROMETHEE: The French Military Hypersonic Propulsion Program Status in 2002", 12th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2003-6950, Dec. 2003.

11) Novelli, P., and Koschel, W., "Progress of the JAPHAR Cooperation between ONERA and DLR on Hypersonic Airbreathing Propulsion", 10th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2001-1870, Apr. 2001.

12) Falempin, F., and Serre, L., "LEA Flight Test Program: A First Step to an Operational Application of High-Speed Airbreathing Propulsion", 12th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2003-7031, Dec. 2003.

13) Kanda, T., and Kudo, K., "A Conceptual Study of a Combined Cycle Engine for an Aerospace Plane", 11th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2002-5146, Sept. 2002.

14) Kanda, T., Kudo, K., Kato, K., and Murakami, A., "Scramjet Mode Tests of a Combined Cycle Engine Combustor", 12th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2003-7051, Dec. 2003.

15) Gardner, A. D., Hannemann, K., Steelant, J., and Paull, A., "Ground Testing of the HyShot Supersonic Combustion Flight Experiment in HEG and Comparison with Flight Data", 40th Joint Propulsion Conference, AIAA Paper 2004-3345, July 2004.

16) Centre for Hypersonics -HyShot Scramjet Test Programme, http://www.mech.uq.edu.au /hyper/hyshot/

17) Boyce, R. R., Gerard, S. and Paull, A., "The HyShot Scramjet Flight Experiment -Flight Data and CFD Calculations Compared", 12th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2003-7029, Dec. 2003.

18) Lee, S.-H., Jeung, I.-S. and Yoon, Y., "Computational Investigation of ShockEnhanced Mixing and Combustion", AIAA Journal, Vol. 35, No. 12, 1997, pp.1813-1820.

19) Choi, J.-Y., Jeung, I.-S. and Yoon, Y., "Numerical Study of SCRam-Accelerator Starting Characteristics", *AIAA Journal*, Vol. 36, No. 6, 1998, pp.1029-1038.

20) Choi, J.-Y., Jeung, I.-S. and Yoon, Y., "Unsteady-State Simulation of Model Ram Accelerator in Expansion Tube", *AIAA Journal*, Vol. 37, No. 5, 1999, pp.537-543.

21) Moon, G.-W, Jeung I.-S., Choi, J.-Y., Yoon, Y., Seiler, F., Patz, G., Smeets, G., and Srulijes, J., "Numerical Modeling and Simulation of ISL RAMAC 30 Experiment", *Journal de Physique IV*, Vol.10, No. 11, Nov. 2000, pp. 143-154.

22) Moon, G.-W., Jeung, I.-S., Choi, J.-Y., Seiler, F., Patz, G., Smeets, G. Srulijes, J., "Numerical Study of Regular Start and Unstart Process of Superdetonative Speed Ram Accelerator in H2/O2/CO2 Premixtures", Publication of ISL(French-German Institute of Saint Louis), PU601/2001, 2001.

23) Kim, J.-H., Huh, H. Yoon, Y., Choi, J.-Y. and Jeung, I.-S., "Numerical study on Mixing Enhancement by Shock Waves in a Model Scramjet Engine", *AIAA Journal*, Vol.41, No. 6, 2003, pp. 1074-1080.

24) 문귀원, 정은주, 이병로, 정인석, 최정열, " 후방단이 있는 초음속 연소기의 연소수치해석", *한국연소학회지*, 제 7권 3호, 2002년 9월, pp. 32-36.

25) 원수희, 정은주, 정인석, 최정열, "극초음속 스크램제트 엔진의 연소특성", *한국추진공학회지*, 제 8권 제1호, pp. 61-69, 2004.

26) 최정열, 노태성, 이상현, 허환일, 초고속 추 진을 위한 연소 체계 기초 연구, 한국과학재단 2000 특정기초 연구보고서, 2003.

27) 이상현, "초음속 유동장 내 수직분사의 혼 합특성 개선 연구", *한국항공우주학회지*, 제29권 5호, 2001, pp. 99-107.

28) 허환일, "초음속 연소기 내부의 추력 분포 계 산", *한국항공우주학회지*, 제31권 4호, 2003, pp. 69-75.

29) Choi, J.-Y., Yang, V. and Ma., F., "Combustion Oscillations in a Scramjet Engine Combustor with Transverse Fuel Injection", *Proceedings of the Combustion Institute*, Vol. 30/2, Dec. 2004, pp. 2851-2858.

30) Puri, P., Ma, F., Choi, J.-Y., and Yang, V., "Ignition Characteristics of Cracked JP-7 Fuel", *Combustion and Flame*, in review process.