DOI QR코드

DOI QR Code

Development of Multi-dimensional Limiting Process for Multi-dimensional Compressible Flow

다차원 압축성 유동 해석을 위한 MLP 기법의 개발

  • Published : 2006.07.31

Abstract

Through the analysis of conventional TVD limiters, a new multi-dimensional limiting function is derived for an oscillation control in multi-dimensional flows. Then, Multi-dimensional Limiting Process (MLP) is developed with the multi-dimensional limiting function. The major advantage of MLP is to prevent oscillations across a multi-dimensional discontinuity, and it is readily compatible with more than 3rd order spatial interpolation. Moreover, MLP shows a good convergence characteristic in a steady problem and it is very simple to be implemented. Through numerical test cases, it is verified that MLP substantially improves accuracy, efficiency and robustness both in continuous and discontinuous flows.

본 논문에서는 불연속면이 포함된 다차원 유동에서 흔히 발생하는 수치적 진동현상을 막기 위해 기존의 TVD 제한자를 분석함으로써 새로운 형태의 다차원 제한 함수를 유도하였다. MLP 기법은 유도된 다차원 제한 함수를 기반으로 하며, 다차원 불연속면에서의 수치 진동을 효과적으로 제거하고 동시에 3차 이상의 공간 정확도 내삽기법과 함께 사용할 수 있다는 장점을 갖는다. 또한, 정상 유동의 경우 수치 진동이 제거됨으로써 수렴성이 향상됨을 확인할 수 있었고, 실제 코드에 적용하는 방법도 간단하다. MLP 기법을 적용함으로써 불연속 유동 뿐 만 아니라 연속 유동에서도 정확성, 효율성, 강건성 면에서 향상된 결과를 얻을 수 있음을 여러 가지 수치 실험을 통하여 확인하였다.

Keywords

References

  1. A. Harten, 'High resolution schemes for hyperbolic conservation laws', J. Comput. Physics. Vol. 49, 1983, pp. 357 https://doi.org/10.1016/0021-9991(83)90136-5
  2. S. R. Chakravarthy and S. Osher, 'A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws', AIAA Journal, Paper No. 85-0363, 1985
  3. Z. J. Wang and B. E. Richards, 'High-resolution schemes for steady flow computation', J. Comput. Physics. Vol. 97, 1991, pp.53 https://doi.org/10.1016/0021-9991(91)90036-K
  4. H. C. Yee, 'Construction of explicit and implicit symmetric TVD schemes and their applications', J. Comput. Physics. Vol. 68, 1987, pp. 151 https://doi.org/10.1016/0021-9991(87)90041-6
  5. J. B. Goodman and R. J. Le Veque, 'On the accuracy of stable schemes for 2D scalar conservation laws', Mathematics of Computation, Vol. 45, 1985, pp. 15 https://doi.org/10.2307/2008046
  6. C. W. Shu, 'TVB Uniformly High-order Schemes for Conservation Laws', Mathematics of Computation, Vol. 49(179), 1987, pp. 105-121 https://doi.org/10.2307/2008246
  7. A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, 'Uniformly high order essentially non-oscillatory scheme III', J. Comput. Physics. Vol. 71, 1987, pp. 231 https://doi.org/10.1016/0021-9991(87)90016-7
  8. Xu-Dong Liu, Stanley Osher and Tony Chan, 'Weighted Essentially Non-oscillatory Schemes', J. of Comput. Physics, Vol.15, 1994, pp. 200-212
  9. Guang-Shan Jiang and Chi-Wang Shu, 'Efficient Implementation of Weighted ENO Schemes', J. of Comput. Physics, Vol. 126, 1996, pp. 202-228 https://doi.org/10.1006/jcph.1996.0130
  10. Dinshaw S. Balsara and Chi-Wang Shu, 'Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy', J. of Comput. Physics, Vol. 160, 2000, pp. 405-452 https://doi.org/10.1006/jcph.2000.6443
  11. A. Suresh and H. T. Huynh, 'Accurate Monotonicity-Preserving Schemes with Runge?Kutta Time Stepping', J. of Comput, Physics, Vol. 136, 1997, pp. 83-99 https://doi.org/10.1006/jcph.1997.5745
  12. H. C. Vee, N. D. Sandham and M. J. Djomehri, 'Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters', J. of Comput Physics, Vol. 150, 1999, pp. 199-238 https://doi.org/10.1006/jcph.1998.6177
  13. Eric Garnier, Pierre Sagaut and Michel Deville, 'A Class of Explicit ENO Filters with Application to Unsteady Flows', J. of Comput. Physics, Vol. 170, 2001, pp. 184-204 https://doi.org/10.1006/jcph.2001.6699
  14. B. van Leer, 'Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second-order scheme', J. of Comput. Physics. Vol. 14, 1974, pp. 361 https://doi.org/10.1016/0021-9991(74)90001-1
  15. B. van Leer, 'Towards the ultimate conservative difference scheme V. : A second order sequel to Codunov's method', J. of Comput. Physics. Vol. 32, 1979, pp. 101 https://doi.org/10.1016/0021-9991(79)90137-2
  16. P. K. Sweby, 'High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,' SIAM Journal on Numerical Analysis, Vol. 21(5), 1984, pp. 995-1011 https://doi.org/10.1137/0721001
  17. K. H. Kim and C. Kim, 'Accurate, Efficient and Monotonic Numerical Methods for Multi-dimensional Compressible Flows, Part I : Spatial Discretization', J. of Comput. Physics, Vol. 208(2), 2005, pp. 527-569 https://doi.org/10.1016/j.jcp.2005.02.021
  18. P. L. Roe, 'Approximation Riemann Solver, Parameter Vectors and Difference Schemes', J. of Comput. Physics, Vol. 43, 1981, pp. 357-37 https://doi.org/10.1016/0021-9991(81)90108-X
  19. K. H. Kim, C. Kim and O. H. Rho, 'Methods for the Accurate Computations of Hypersonic Flows, Part I AUSMPW+ Scheme', J. of Comput. Physics, Vol. 174, 2001, pp. 38-80 https://doi.org/10.1006/jcph.2001.6867
  20. S. Yoon and A. Jameson, 'Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations', AIAA Journal, Vol. 26(9), 1988, pp. 1025 https://doi.org/10.2514/3.10007
  21. C. Shu and S. Osher, 'Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes,' J. of Comput, Physicss. Vol. 77, 1988, pp. 439-471 https://doi.org/10.1016/0021-9991(88)90153-2
  22. Akira Ogawa, Vortex flow, CRC Press, 1992
  23. V. Dam, C. Tenaud, 'Evaluation of TVD high resolution schemes for unsteady viscous shocked flows', Computers and Fluids, Vol. 30, 2001, pp. 89-113 https://doi.org/10.1016/S0045-7930(00)00003-7

Cited by

  1. Numerical Study of High Resolution Schemes for GH2/GO2 Rocket Combustor using Single Shear Coaxial Injector vol.22, pp.6, 2018, https://doi.org/10.6108/KSPE.2018.22.6.072