DOI QR코드

DOI QR Code

유연수지를 기지재료로 하는 복합재료의 비선형거동 예측

Prediction of Non-linear Behavior of Flexible Matrix Composites

  • 발행 : 2006.10.31

초록

본 논문에서는 유연수지 복합재료에 대하여 기하학적 비선형해석을 수행하였다. 실제 랜덤한 섬유배열을 사각배열과 육각배열로 가정하고 각각에 대해 단위구조를 정의하였다. 다양한 하중상태를 수치적으로 모사하여 단위구조해석을 통해 전체 구조물의 응력-변형률 선도를 예측하였고 이로부터 등가물성치를 계산하였다. 해석시 유연수지의 초탄성 성질을 정의하기 위해 Mooney-Rivlin모델을 사용하였다. 계산결과, 유연수지 복합재료 구조물은 변형률 증가에 따라 비선형의 응력-변형률 관계를 보였다. 비선형성은 횡방향 하중 상태에서 더욱 두드러지게 나타났으며, 이 경우 복합재 단면의 섬유배열 형태에 따라 상당한 차이를 보여주었다.

In this paper, mechanical behavior of unidirectional composites with flexible matrix was predicted by geometrical non-linear finite element analysis. Two typical idealized unit cells of square and hexagonal fiber arrays were modeled and these were subjected to different loadings. The stress-strain behavior of composites was predicted from which the effective properties were calculated. The hyperelasticity of polyurethane matrix was considered using Mooney-Rivlin model. In result, the stress-strain behavior of flexible composites shows non-linearity, especially it is remarkable under transverse normal and shear loading conditions. In this cases, there are great difference between square and hexagonal fiber array models.

키워드

참고문헌

  1. 김동민, 강왕구, 이진우, 염찬홍, '비행선용막구조 설계 기법 연구', 한국복합재료학회 2002년도 추계학술대회 논문집, 한국복합재료학회, pp. 87-90, 2002
  2. Cadogan, D., Stein, J. and Crahne, M. 'Inflatable Composite Habitat Structures for Lunar and Mars Exploration', Acta Astronautica, Vol. 4, 1999, pp. 399-406
  3. Sandy, C. 'Next Generation Space Telescope Inflatable Sunshield Development', 2000 IEEE Aerospace Conference. March, 2000
  4. Hashin, Z., 'Analysis of Composite Materials-A Survey', Journal of Applied Mechanics, Vol. 50, 1983, pp. 481-505 https://doi.org/10.1115/1.3167081
  5. Whitney, J. M. and Riley, M. B., 'Elastic Properties of Fiber Reinforced Composite Materials', AIAA Journal, Vol. 4, No.9, 1996, pp. 1537-1542
  6. Chamis, C. C, 'Simplified Composite Micromechanics Equations for Hygral, Thermal and Mechanical Properties', SAMPE Quarterly, Vol. 15, No.3, Apr. 1984, pp. 14-23
  7. Chamis, C. C, 'Mechanics of Composite Materials: Past, Present, and Future', Journal of Composite Technology & Research, JCTRER, Vol. 11, No.1, 1989, pp. 3-14 https://doi.org/10.1520/CTR10143J
  8. Caruso, J. J. & Chamis, C. C. 'Assessment of Simplified Composite Micromechanics Using Three-Dimensional Finite Element Analysis', Journal of Composite Technology & Research, Vol. 8, 1986, pp. 77-83 https://doi.org/10.1520/CTR10326J
  9. Aboudi, J., 'Micromechanical Analysis of Composites by the Method of Cells', Applied Mechanics Reviews, Vol. 42, No.7, 1989, pp. 193-221 https://doi.org/10.1115/1.3152428
  10. ABAQUS Analysis User's Manual, Version 6.4
  11. Huang, X. M., Ramakrishna, S., Dinner, H. P. and Tay, A. A. O., 'Characterization of A Knitted Fabric Reinforced Elastomer Composite', Journal of Reinforced Plastics and Composites, Vol. 18, No.2, 1999, pp. 118-137 https://doi.org/10.1177/073168449901800202