DOI QR코드

DOI QR Code

Effect of the Level of Carbohydrates on Bio-hydrogenation and CLA Production by Rumen Bacteria When Incubated with Soybean Oil or Flaxseed Oil In vitro

Soybean Oil 및 Flaxseed Oil 첨가 배양시 탄수화물 첨가수준에 의한 반추미생물의 Bio-hydrogenation과 CLA 생성에 미치는 효과

  • Published : 2006.08.31

Abstract

An in vitro study was conducted to examine the effect of addition level of carbohydrates on fermentation characteristics, and bio-hydrogenation of unsaturated fatty acids by mixed rumen bacteria when incubated with soybean oil or flaxseed oil. Four levels(0%, 0.3%, 0.6% and 0.9%, w/v) of the mixed carbohydrates(glucose, cellobiose, soluble starch, 1:1:1, in weight basis) and oil sources(soybean or flaxseed oil, 60mg in 150ml culture solution) were added to the mixed solution of strained rumen fluid with artificial saliva(1:4, v/v), and incubated anaerobically for 12 hours at 39℃. pH and ammonia-N concentration were lower by increasing the substrate levels at all incubation periods(P<0.05~P<0.001). The propionate proportion increased(P<0.001), but acetic acid and butyric acid decreased(P<0.001) with the substrate level at 6 and 12 h incubations. Oil sources did not influence the proportions of individual VFA. At the end of incubation, the proportions of C18:0(P<0.01), C18:1(P<0.001) and trans-11C-18:1(P<0.01) were reduced but those of C18:2(P<0.001) and C18:3(P<0.01) were enhanced by the addition of flaxseed oil compared to addition of soybean oil. The proportions of C18:0 and total CLA were reduced(P<0.01) but those of trans-11-C18: (P<0.05) and C18:2(P<0.01) were increased with the substrate level when incubated with soybean oil or flaxseed oil. There were interactions(P<0.05) in the proportions of C18:1, C18:2 and C18:3(P<0.01) between oil source and substrate level. The proportions of cis-9, trans-11-CLA and trans-10, cis-12-CLA tended to reduce with substrate level, although there was no significant difference between treatments.

본 실험은 대두유 또는 아마유를 in vitro 방법으로 배양 할 때, 탄수화물원의 첨가수준이 반추위 박테리아에 의한 bio-hydrogenation과 CLA 생성에 미치는 효과를 조사하였다. 4수준(0%, 0.3%, 0.6% 그리고 0.9%, w/v)의 혼합된 탄수화물원(glucose, cellobiose, soluble starch, 1:1:1, w/w/w)과 두 종류의 oil을 cellulose powder에 흡착시킨 형태로 각각 60mg씩 인공타액(120ml)과 반추위액(30ml)이 혼합된 배양액(150ml)에 넣은 다음 39℃에서 12시간동안 혐기적으로 배양하였다. 배양액의 pH와 암모니아 농도는 두 종류 oil을 첨가한 배양액 모두에서 탄수화물원의 첨가 수준이 높을수록 pH와 암모니아 농도가 낮았다(P<0.05). 탄수화물원의 첨가 수준이 증가할수록 total VFA 생성량 역시 증가되었으나(P<0.01) 첨가한 oil 간의 차이는 없었다. 배양시간이 경과됨에 따라 탄수화물원의 첨가수준이 높을수록 propionate의 조성비율이 증가된 반면(P<0.001) acetate와 butyrate의 조성비율은 감소되었다. 배양 후 3시간이 경과하였을 때 배양액 내 oleic acid의 조성비율은 대두유에 비하여 아마유를 첨가한 배양액에서 낮았으나(P<0.001) linoleic acid의 비율은 높았다(P<0.001). 이와는 달리 탄수화물원의 수준이 증가될수록 stearic acid(P<0.05), CLA(P<0.01) 및 cis-9, trans-11 CLA(P<0.001)의 조성비율은 감소되었으나, linoleic acid의 조성 비율은 증가되었다(P<0.05). Linolenic acid의 조성비율에 있어서는 첨가된 oil의 종류와 첨가된 탄수화물원의 수준간의 상호작용이 있는 것으로 나타났는데(P<0.001), 12시간의 배양종료 후 대두유 첨가구에 비해 아마유 첨가구에서 stearic acid(P<0.01), oleic acid(P<0.001), 그리고 trans-11C18:1(P<0.01)의 조성비율이 감소된 반면, linoleic acid(P<0.001)와 linolenic acid(P<0.01)의 조성비율은 증가되었다. 탄수화물원의 첨가수준이 증가될수록 stearic acid와 총 CLA의 조성비는 감소되었으나(P<0.01), trans-11-C18:1(P<0.05)와 linoleic acid(P<0.01)의 조성비율은 증가되었다. 배양 12시간 후 배양액 내의 oleic acid (P<0.05), linoleic acid(P<0.05) 및 linolenic acid(P<0.01)의 조성비율에 있어서는 첨가한 oil의 종류와 첨가한 탄수화물원의 수준간의 상호작용이 있었는데, 탄수화물원의 첨가수준이 감소됨에 따라 cis-9, trans-11 CLA와 trans-10, cis-12 CLA의 조성비 역시 감소되는 경향이었으나 첨가한 oil의 종류에 대한 영향은 거의 받지 않았다. 본 실험의 결과를 종합해 볼 때, 탄수화물의 첨가수준과 oil의 첨가는 반추미생물의 bio-hydrogenation 작용 및 CLA 생성에 영향할 수 있는 것으로 여겨진다.

Keywords

References

  1. Banni. S. and Martin. J. C. 1998. Conjugated Linoleic Acid and Metabolites. In Trans Fatty Acids in Human Nutrition. pp, 261-302. Dundee. Scotland. The Oily Press. Ltd
  2. Bauman. D. E. and Griinari, J. 2003. Nutritional Regulation of Milk Fat Synthesis. Annu. Rev. Nutr. 23:203-227 https://doi.org/10.1146/annurev.nutr.23.011702.073408
  3. Sessa. R. J.. Santos-Silva, J., Ribeiro. J. M. and Portugal, A. V. 2000. Reticulo-Rumen Bio-hydrogenation and the Enrichment of Ruminal Edible Products with Linoleic Aid Conjugated Isomers. Appl. Environ. Microbiol. 63:201-211
  4. Chilliard. Y.. Ferlay. A.. Mansbridge, R. and Doreau, M. 2000. Ruminant Milk Fat Plasticity: Nutritional Control of Saturated. Polyunsaturated, trans and Conjugated Fatty Acids. Ann. Zootech. 49: 181-205 https://doi.org/10.1051/animres:2000117
  5. Choi, S. H. and Song. M. K. 2005. Effect of e Is-Polyunsaturated Fatty Acids on Their Direct Incorporation into the Rumen Bacterial Lipids and eLA Production In Vitro. Asian-Aust. J. Anim. Sci. Vol 18. No 4. 512-515 https://doi.org/10.5713/ajas.2005.512
  6. Choi, S. H., Wang. J. H., Kim, Y. J., Oh, Y. K. and Song, M. K. 2006. Effect of Soybean Oil Supplementation on the Contents of Plasma Cholesterol and cis9. trans11-CLA of the Fat Tissues in Sheep. Asian-Aust. J. Anim. Sci. Vol 19:679-683 https://doi.org/10.5713/ajas.2006.679
  7. Choi. N. J.. Imm, J. Y., Oh, S. J., Kim. B. C, Hwang. H. J. and Kim, Y. J. 2005. Effect of pH and Oxygen on Conjugated Linoleic Acid(CLA) Production by Mixed Rumen Bacteria from Cows Fed High Concentrate and High Forage diets. Animal Feed Science and Technology. 123-124 :643-653
  8. Cook. M. E.. Miller. C. C. Park. Y. and Pariza, M. 1993. Immune Modulation by Altered Nutrient Metabolism: Nutritional Control of Immune-Induced Growth Depression. Poult Sci. 72: 1301-1305 https://doi.org/10.3382/ps.0721301
  9. Demeyer. D. and Doreau, M. 1999. Targets and Procedures for Altering Ruminant Meat and Milk Lipids. Proc. Nutr. Soc. 58:593-607
  10. Devendra, C. and Lewis. D. 1974. The Interaction between Dietary Lipids and Fiber in the Sheep. Anim. Proc. 19:67-76 https://doi.org/10.1017/S0003356100022583
  11. Dhiman, T. R.. Helmink, E. D.. Mclvlahon, D. J., Fife. R. L. and Pariza, M. W. 1999. Conjugated Linoleic Acid Content of Milk and Cheese from Cows Fed Extruded Oilseeds. J. Dairy. Sci. 82: 412-419 https://doi.org/10.3168/jds.S0022-0302(99)75247-1
  12. Fallner. V.. Sauer, F. D. and Kramer, J. K. G. 1997. Effect of Nigericin. Monensin, and Tetronasin on bio-hydrogenation in Continuous Flow-through Ruminal Fermenters. J. Dairy. Sci. 80:921-928 https://doi.org/10.3168/jds.S0022-0302(97)76015-6
  13. Fawcett, J. K. and Scott. J. E. 1960. A Rapid and Precise Method for the Determination of Urea. J. Clin. Pathol. 13:156-163 https://doi.org/10.1136/jcp.13.2.156
  14. Folch, J., Lee, M. and Sloan-Stanley. G. H. 1957. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissue. J. Biol. Chem. 226:497-509
  15. Ha, Y. L., Grimm, N. K. and Pariza, M. W. 1987. Anticarcinogens from Fried Ground Beef: Heat-Altered Derivatives of Linoleic Acid. Carcinogenesis. 8:1881-1887 https://doi.org/10.1093/carcin/8.12.1881
  16. Harfoot, C. G. and Hazlewood, G. P. 1997. Lipid Metabolism in the Rumen. pages 382-426. in The Rumen Microbial Ecosystem. P. N. Hobson, ed. Chapman & Hall. London. UK
  17. Harfoot. C. and Hazlewood. G. 1988. Lipid Metabolism in the rumen. In: Hobson. P.N.(Ed.). The Rumen Microbial Ecosystem. Elsevier. London. UK. p.285
  18. Jiang. J., Bjorck. L. and Fonden. R 1998. Production of Conjugated Linoleic Acid by Dairy Starter Cultures. J. Appl. Microbial. 85 :95-102 https://doi.org/10.1046/j.1365-2672.1998.00481.x
  19. Kelly. M. I Berrym. J. R. lwycr. D. A.. Griinari, J. M.. Choinard, P. Y.. Vanamburgh. M. E. and Bauman. D. E. 1998. Dietary Fatty Acid Sources Affect Conjugated Linoleic Acid Concentrations in Milk from Lactating Dairy Cow. J. Nutr. 128: 881-885
  20. Kepler. C. R. and Tove. S. B. 1967. Bio-hydrogenation of Unsaturated Fatty Acids. 3. Purification and Properties of a Linoleate delta-9-cis. delta11-isomerase from Butryrivibrio fibrisolvens. J. Biol. Chem. 242:5686-5692
  21. Kopecny, J., Jurcuk, J. G. and Bartos. S. 1983. The Effect of pH and 1.4-Dithiothreitol on the Adhesion of Rumen Bacteria. Folia Microbiol. (Praha) 28: 130-133 https://doi.org/10.1007/BF02877369
  22. Latham, M. J., Storry. J. E. and Sharpe, M. E. 1972. Effect of Low-Roughage Diets on the Microflora and Lipid Metabolism in the Rumen. Appl. Microbiol. 24:871-877
  23. Lee, K. N., Kritchevsky, D. and Pariza, M. W. 1994. Conjugated Linoleic Acid and Atherosclerosis in Rabbits. Atherosclerosis. 108:19-25 https://doi.org/10.1016/0021-9150(94)90034-5
  24. Lepage, G. and Roy, C. C. 1986. Direct Transesterification of all Classes of Lipid in a One-step Reaction. J. Lipid Research. 27: 114-121
  25. Loor, J. .I., Ueda, K., Ferlay. A., Chillard, Y. and Doreau, M. 2005. Intestinal Flow and Digestibility of Trans-Fatty Acids and Conjugated Linoleic Acid(CLA) in Dairy Cows Fed a High-Concentrate Diet Supplemented with Fish Oil, Linseed Oil, or Sunflower Oil. Animal Feed Science and Technology. 119:203-225 https://doi.org/10.1016/j.anifeedsci.2005.01.001
  26. Martin, S. A. and Jenkins, T. C. 2002. Factors Affecting Conjugated Linoleic Acid and trans-11 C_I81 Fatty Acid Production by Mixed Ruminal Bacteria. J. Anim. Sci. 80:3347-3352 https://doi.org/10.2527/2002.80123347x
  27. Park Y. .I.. Albright, J., Storkson. .I. M.. Coom. M. E. and Pariza, M. W. 1997. Effects of Conjugated Linoleic Acid on Body Composition in Mice. Lipids. 32:853-858 https://doi.org/10.1007/s11745-997-0109-x
  28. SAS.. 1985. SAS Users Guide : Statistical Analysis Systems Institute. Inc.. Cary, NC
  29. Steinhart. C. 1996. Conjugated Linoleic Acid- the Good News About Animal Fat. J. Chem, Ed. 73:A 302-A 303 https://doi.org/10.1021/ed073pA302
  30. Wang. J. H.. Song. M. K.. Son. Y. S. and Chang. M. B. 2002a. Addition Effect of Seed-Associated or Free Linseed Oil on the Formation of cis-9. trans-11 Conjugated Linoleic Acid and Octadecenoic Acid by Ruminal Bacteria in vitro. Asian-Aust. J. Anim. Sci. Vol 15. No. 8:1115-1120 https://doi.org/10.5713/ajas.2002.1115
  31. Wang. J. H.. Song, M. K.. Son. Y. S. and Chang, M. B. 2002b. Effect of Concentrate Level on the Formation of Conjugated Linoleic Acid and trans-Octadecenoic Acid by Ruminal Bacteria When Incubated with Oilseeds in vitro. Asian-Aust. J. Anim. Sci. Vol 15. No. 5:687-694 https://doi.org/10.5713/ajas.2002.687
  32. Wang. J. H.. Choi. S. H. and Song. M. K. 2003. Effects of Concentrate to Roughage Ration on the Formation of cis-9. trans-11 CLA and trans-11-Octadecenoic Acid in Rumen Fluid and Plasma of Sheep When Fed High Oleic or High Linoleic Acid Oils. Asian-Aust. J Anim. Sci. Vol 16. No. 11:1604- 1609 https://doi.org/10.5713/ajas.2003.1604
  33. Wang. J. H. and Song. M. K. 2003. pH Affects the In Vitro Formation of cis-9. trans-11 CLA and trans- 11 Octadecenoic Acid by Ruminal Bacteria When Incubated with Oilseeds. Asian-Aust. J. Anim. Sci. 16:1743-1748 https://doi.org/10.5713/ajas.2003.1743