DOI QR코드

DOI QR Code

Studies on Correlation Among Sperm Characteristics, Farrowing Rates by AI and Chromatin Structure in Boars

돼지에서 정액 성상 및 인공수정 분만율과 염색질 구조 분석(SCSA)과의 상관관계에 관한 연구

  • Published : 2006.12.31

Abstract

This study was designed to investigate between the semen characteristics and sperm chromatin structure in boar with different farrowing rates and relationship between fertility by AI and results of sperm chromatin structure assay (SCSA). The CASA (computer-aided sperm analysis) and SCSA were performed with liquid semen in boars. The all SCSA parameters based on the farrowing rates by AI were significantly differ (P<0.05). The significant negative correlations (P<0.05) were observed between all SCSA parameters and farrowing rate obtained by AI in the field. In conclusion, these results suggest that the sperm parameters evaluated in these studies may be useful indicators to predict the fertility by AI.

본 연구는 돼지에서 정자 SCSA와 정자 운동성 및 인공수정을 이용한 분만율과의 상관관계를 조사하기 위해 인공수정센터에서 정액 생산용으로 이용되고 있는 종모돈 중 개체별 정액을 이용한 인공수정 번식성적을 가지고 있는 종모돈 26두의 정액 성상 기록과 번식성적을 분석 하였고, 액상정액을 공시하여 정자운동성 분석과 SCSA를 실시하였다. 종모돈의 정액 채취 횟수에 따른 SCSA 분석은 종모돈 26두를 공시하여 정액을 8주간 6회 채취하여 공시하였다. 종모돈은 인공수정 분만율(80% 이상 ; 종모돈 7두, AI 256복, 8070% ; 종모돈 9두, AI 745복 및 70% 미만 ; 종모돈 10두, AI 293 복)에 따라 3개 군으로 구분 하였다. 액상 정액의 CASA 분석 결과는 분만율에 따른 종모돈 군 간에 유의적인 차이는 인정되지 않았다. 종모돈의 SCSA 결과는 분만율이 높을수록 COMP αt, %Red, %Peak R 및 %Mean R 값은 낮게 나타났고, 분만율이 가장 낮은 종모돈 군과 다른 두 군간에 유의적인 차이를 보였다(P<0.05). 종모돈 정액을 채취 차수에 따른 정액의 성상과 SCSA를 조사한 결과에서 채취 차수에 따른 차이는 나타나지 않았다. 종모돈의 인공수정 분만율과 SCSA 결과와의 상관관계는 COMP αt, SD αt, %Red, %Peak R, Mean R는 모두 부의 상관관계를 나타냈다. 이상의 결과에서 SCSA는 종모돈 정액의 수정 능력을 평가하고 예측하는데 유용한 방법으로 사료된다.

Keywords

References

  1. Aleksander Giwercman, Richthoff, J., Hjollund, H., Bonde, J. P., Jepson, K., Frohm, B. and Spano, M. 2003. Correlation between sperm motility and sperm chromatin structure assay parameters. Fertil. Steril., 80:1404-1412 https://doi.org/10.1016/S0015-0282(03)02212-X
  2. Bielecki, R., Zini, A., Phang, D. and Zenzes, M. T. 2001. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil. Steril., 75:674-677 https://doi.org/10.1016/S0015-0282(00)01796-9
  3. Bochenek, M., Smorg, Z. and Pilch, J. 2001. Sperm chromatin structure assay of bulls qualified for artificial insemination. Theriogenology, 56:557-567 https://doi.org/10.1016/S0093-691X(01)00588-X
  4. Boilard, M., Bailey, J., Collin, S., Dufour, M. and Sirard, M. A. 2002. Effect of bovine oviduct epithelial cell apical plasma membranes on sperm function assessed by a novel flow cytometric approach. Biol. Reprod., 67:1125-1132 https://doi.org/10.1095/biolreprod67.4.1125
  5. Boissenault, G. 2002. Chromatin remodelling during spermiogenesis : a possible role for the transition proteins in DNA strand break repair. FEBS Lett., 514:111-114 https://doi.org/10.1016/S0014-5793(02)02380-3
  6. Carver-Ward, J. A., Moran-Verbeek, I. M. and Hollanders, J. M. 1997. Comparative flow cytometric analysis of the human sperm acrosome reaction using CD46 antibody and lectins. J. Assist Reprod. Genet., 14:111-119 https://doi.org/10.1007/BF02765780
  7. Cho, C., Jung-Ha, H. and Willis, W. D. 2003. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol. Reprod., 69:211-217 https://doi.org/10.1095/biolreprod.102.015115
  8. D'Cruz, O. J. and Haas, G. G. 1996. Fluorescence- labeled fucolectins are superior markers for flow cytometric quantization of the human sperm acrosome reaction. Fertil. Steril., 65:843-851 https://doi.org/10.1016/S0015-0282(16)58224-7
  9. Evenson, D. and Jost, L. 1994. Sperm chromatin structure assay:DNA denaturability. Methods Cell Biol., 42:159-176 https://doi.org/10.1016/S0091-679X(08)61073-0
  10. Evenson, D. and Jost, L. 2000. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci., 22:169-189 https://doi.org/10.1023/A:1009844109023
  11. Evenson, D. and Lorna Jost. 2002. Sperm chromatin structure assay is useful for fertility assessment. Fertil. Steril., 78(Suppl. 1) : S191
  12. Evenson, D. and Zbigniew Darzynkiewicz. 1990. Acridine orange induced precipitation of mouse testicular sperm cell DNA reveals new patterns of chromatin structure. Exp. Cell Res., 187:328-334 https://doi.org/10.1016/0014-4827(90)90100-O
  13. Evenson, D. P., Jost, L. K. and Gandy, J. 1993. Glutathione depletion potentiates ethyl methane sulfonate induced damage to sperm chromatin structure. Reprod. Toxicol., 7:297-304 https://doi.org/10.1016/0890-6238(93)90019-4
  14. Evenson, D. P., Jost, L. K., Marshall, D., Zinaman, M. J., Clegg, E. and Purvis, K. 1999. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum. Reprod., 14:1039-1049 https://doi.org/10.1093/humrep/14.4.1039
  15. Evenson, D. P., Larson, K. L. and Jost, L. K. 2002. Sperm chromatin structure assay : its clinical use for detecting sperm DNA fragmentation in male infertility and comparison with other techniques. J. Androl., 23:25-43 https://doi.org/10.1002/j.1939-4640.2002.tb02599.x
  16. Evenson, D. P., Darzynkiewicz, Z. and Melamed, M. R. 1980. Relation of mammalian sperm chromatin heterogeneity to fertility. Science, 210: 1131-1133 https://doi.org/10.1126/science.7444440
  17. Evenson, D. P., Darzynkiewitz, Z. and Melamed, M. R. 1982. Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility. J. Histochem. Cytochem., 30:279-280 https://doi.org/10.1177/30.3.6174566
  18. Fuentes-Mascorro, G., Serrano, H. and Rosado, A. 2000. Sperm chromatin. Arch. Androl., 45:215-225 https://doi.org/10.1080/01485010050193995
  19. Gadea, J. and Matas, C. 2000. Sperm factors related to in vitro penetration of porcine oocytes. Theriogenology, 54:1343-1357 https://doi.org/10.1016/S0093-691X(00)00458-1
  20. Gadea, J., Matas, C. and Lucas, X. 1998. Prediction of porcine semen fertility by homologous in vitro penetration (hIVP) assay. Anim. Reprod. Sci., 54:95-108 https://doi.org/10.1016/S0378-4320(98)00144-4
  21. Galli, A. and Bosisio, M. 1988. Quality of semen stored at $+15/16^{\circ}C$ is related to fertility of artificially inseminated swine. Theriogenology, 30: 1185-1190 https://doi.org/10.1016/0093-691X(88)90294-4
  22. Garner, D. L. and Johnson, L. A. 1995. Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol. Reprod., 53:276-284 https://doi.org/10.1095/biolreprod53.2.276
  23. Gillan, L., Evans, G. and Maxwell, W. M. 2005. Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology, 63: 445-457 https://doi.org/10.1016/j.theriogenology.2004.09.024
  24. Gry B. Boe-Hansen, Annette K. Ersboll, Torben Greve and Preben Christensen. 2004. Redefining the relationship between sperm DNA fragmentation as measured by the sperm chromatin structure assay $(SCSA{\circledR})$ and outcomes of assisted reproductive techniques(ART). Fertil. Steril., 82:46 https://doi.org/10.1016/j.fertnstert.2004.06.015
  25. Hammitt, D. G., Martin, P. A. and Callanan, T. 1989. Correlations between heterospermic fertility and assays of porcine seminal quality before and after cryopreservation. Theriogenology, 32:385-399 https://doi.org/10.1016/0093-691X(89)90005-8
  26. Karabinus, D. S., Vogler, C. J., Saacke, R. G. and Evenson, D. P. 1997. Chromatin structural changes in sperm after scrotal insulation of Holstein bulls. J. Androl., 5:549-555
  27. Karabinus, D. S., Evenson, D. P. and Kaproth, M. T. 1991. Effects of egg yolk-citrate and milk extenders on chromatin structure and viability of cyopreserved bull sperm. J. Dairy Sci., 74:3836- 3848 https://doi.org/10.3168/jds.S0022-0302(91)78576-7
  28. Larson, K. L., DeJonge, C. J., Barnes, A. M., Jost, L. K. and Evenson, D. P. 2000. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Human Rep., 15:1717-1722 https://doi.org/10.1093/humrep/15.8.1717
  29. Love, C. C. and Kenney, R. M. 1998. The relationship of increased susceptibility of sperm DNA to denaturation and fertility in the stallion. Theriogenology, 50:955-972 https://doi.org/10.1016/S0093-691X(98)00199-X
  30. Love, C. C., Brinsko, S. P., Rigby, S. L., Thompson, J. A., Blanchard, T. L. and Varner, D. D. 2005. Relationship of seminal plasma level and extender type to sperm motility and DNA integrity. Theriogenology, 63:1584-1591 https://doi.org/10.1016/j.theriogenology.2004.05.030
  31. Love, C. C., Thompson, J. A., Lowry, V. K. and Varner, D. D. 2002. Effect of storage time and temperature on stallion sperm DNA and fertility. Theriogenology, 57:1135-1142 https://doi.org/10.1016/S0093-691X(01)00689-6
  32. Marchetti, C., Obert, G., Deffosez, A. and Marchetti, P. 2002. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum. Reprod., 17:1257-1265 https://doi.org/10.1093/humrep/17.5.1257
  33. Nagy, S., Jansen, J., Topper, E. K. and Gadella, B. M. 2003. A triple stain flow cytometric method to assess plasma and acrosome membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg yolk particles. Biol. Reprod., 68:1828-1835 https://doi.org/10.1095/biolreprod.102.011445
  34. Perez-Llano, B., Lorenzo, J. L., Yenes, P., Trejo, A. and García-Casado, P. 2001. A short hypoosmotic swelling test for the prediction of boar sperm fertility. Theriogenology, 56:387-398 https://doi.org/10.1016/S0093-691X(01)00571-4
  35. Petit, J. M., Ratinaud, M. H., Cordelli, E., Spano, M. and Julien, R. 1995. Flow cytometry and sorting of mouse testis cells : DNA and mitochondrial changes during spermatogenesis. Cytometry, 19:304-312 https://doi.org/10.1002/cyto.990190404
  36. Saleh, R. A., Agarwal, A. and Nelson, D. R. 2002. Increased sperm nuclear DNA damage in normospermic infertile men : a prospective study. Fertil. Steril., 78:313-318 https://doi.org/10.1016/S0015-0282(02)03219-3
  37. Schmid, T. E., Kamischke, A., Bollwein, H., Nieschlag, E. and Brinkworth, M. H. 2003. Genetic damage in oligozoospermic patients detected by fluorescence in-situ hybridization, inverse restriction site mutation assay, sperm chromatin structure assay and the Comet assay. Hum. Reprod., 18:1474-1480 https://doi.org/10.1093/humrep/deg259
  38. Thomas, C. A., Garner, D. L., DeJ-arnette, J. M. and Marshall, C. E. 1998. Effect of cryopreservation on bovine sperm organelle function and viability as determined by flow cytometry. Biol. Reprod., 58:786- 793 https://doi.org/10.1095/biolreprod58.3.786
  39. Waberski, D., Magnus, F., Mendonca Ferreira, F., Petrunkina, A. M., Weitze, K. F. and Topfer-Petersen, E. 2005. Importance of sperm-binding assays for fertility prognosis of porcine spermatozoa. Theriogenology, 63:470-484 https://doi.org/10.1016/j.theriogenology.2004.09.025
  40. Ward, W. S. and Coffey, D. S. 1990. Specific organization of genes in relation to the sperm nuclear matrix. Biochem. Biophys. Res. Commun., 173:20-25 https://doi.org/10.1016/S0006-291X(05)81015-0
  41. Zeng, W. X. and Terada, T. 2001. Protection of boar spermatozoa from cold shock damage by 2-hydroxypropyl-beta-cyclodextrin. Theriogenology, 55:615-627 https://doi.org/10.1016/S0093-691X(01)00430-7