DOI QR코드

DOI QR Code

Strongly Coupled Method for 2DOF Flutter Analysis

강성 결합 기법을 통한 2계 자유도 플러터 해석

  • Published : 2006.01.31

Abstract

In the present study, a strongly coupled analysis code is developed for transonic flutter analysis. For aerodynamic analysis, two dimensional Reynolds-Averaged Navier-Stokes equation was used for governing equation, and ε-SST for turbulence model, DP-SGS(Data Parallel Symmetric Gauss Seidel) Algorithm for parallelization algorithm. 2 degree-of-freedom pitch and plunge model was used for structural analysis. To obtain flutter response in the time domain, dual time stepping method was applied to both flow and structure solver. Strongly coupled method was implemented by successive iteration of fluid-structure interaction in pseudo time step. Computed results show flutter speed boundaries and limit cycle oscillation phenomena in addition to typical flutter responses - damped, divergent and neutral responses. It is also found that the accuracy of transonic flutter analysis is strongly dependent on the methodology of fluid-structure interaction as well as on the choice of turbulence model.

본 연구에서는 완전 내재적 기법을 이용한 2계 자유도 모델에 대한 플러터 해석을 수행하였다. 유동해석을 위하여 2차원 Navier-Stokes 지배방정식을 ε-SST 난류모델과 DP-SGS 병렬화 기법을 이용해 구성하였다. 구조해석을 위하여 피치 와 플런지의 2계 자유도를 갖는 모델을 구성하였으며 시간영역에서의 해석을 위하여 유동해석과 마찬가지로 이중 시간 전진 기법을 이용하였다. 가상 시간 전진에서 유체-구조 결합을 통해서 강성결합을 구현하였으며 이를 천음속 플러터 예측에 적용하였다. 플러터 해석의 전형적인 응답인 감쇠응답, 중립응답, 발산응답 및 limit cycle oscillation (LCO) 등을 계산하였으며, 더불어 플러터 속도 경계곡선을 작성하였다. 천음속 플러터 해석은 난류모델 뿐만 아니라 유체-구조 결합 방법에 따라 다른 특성을 보임을 확인하였다.

Keywords

References

  1. K. Isogai. 'Transonic Dip Mechanism of Flutter of a Sweptback Wing: PART II', AIAA Journal, Septmember 1981 Vol. 19,pp1240-1242 https://doi.org/10.2514/3.7853
  2. J. J. Alonso, A. Jameson, 'Fully-Implicit Time-Marching Aeroelastic Solutions', AIAA paper 94-005
  3. R. B. Melville,S. A. Morton. and D. P. Rizzetta,'Implementation of a Fully-Implicit, Aeroelastic Navier-Stokes Solver',AIAA-97-2039
  4. F. Liu, J. Cai, Y, Zhu, A. Wong, and H. Tsai, 'Calculation of Wing Flutter by a Coupled CFD-CSD Method', AIAA-2000-0907
  5. X. Chen, G. C. Zha, Z. Hu, 'Numerical Simulation of Flow Induced Vibration Based on Fully Coupled Fluid-Structural Interactions', AIAA-2004-2240, 2004
  6. 김동현, 권혁준,이인, 권오준, 백승길, 현용희, '고속 병렬처리 기법을 이용한 전기체 항공기 형상의 천음속/초음속 비선형 공탄성 해석', 한국항공우주학회지,Vol. 30. No.8,pp. 46-56,2002 2002
  7. Bo-sung Lee and D. Lee,'Data Parallel Symmetric Gauss-Seidel Algorithm for Efficient Distributed Computing',AIAA 97-2138
  8. Tae-yoon Kim, Be-sung Lee, Dong-he Lee, 'Study On Unsteady Wakes Behind a Square Cylinder Near a Wall', Journal of Mechanical Science and Technology, Vol. 19, No.5, pp. 1169-1181, 2005 https://doi.org/10.1007/BF02984039
  9. Raymond L. Bisplinghoff, Holt Ashley, 'Principles of Aeroelasticity', John Wiley and Sons, pp. 189
  10. S. S. Davis, 'NACA64AOlO(NACA Ames Model) Oscillatory Pitching', Tech. Rep. AGARD Report No. 702, AGARD, August 1982
  11. Earl Dowell et al. 'Nonlinear AeroElasticity', Journal of Aircraft Vol.40, 2003
  12. B. B. Prananta, H. M. H. L., and Z. R. J., 'Two-Dimensional Transonic Aeroelastic Analysis Using Thin-Layer Navier-Stokes Method', Journal of Fluid and Structures, vol. 12, pp. 655-676, 1998 https://doi.org/10.1006/jfls.1998.0167
  13. J. Bohbot and D. Darracq, 'Time Domain Analysis of Two D.o.F. Airfoil Flutter Using an Euler/Turbulent Navier-Stokes Implicit Solver', International Forum on Aeroelasticity and Structural Dynamics, Madrid, Spain, June 5-7, 2001

Cited by

  1. Numerical analysis of the vortex induced vibration of the 2-D cylinder using dynamic deforming mesh vol.41, pp.1, 2013, https://doi.org/10.5139/JKSAS.2013.41.1.1