Sprouted Black Rice Oligopeptide Induces Expression of Hyaluronan Synthase in HaCaT Keratinocytes and Improves Skin Elasticity

발아 검은쌀 올리고펩타이드의 각질형성세포에서 Hyaluronan Synthase 발현과 피부 탄력 개선 효과

  • 심관섭 (한불화장품(주) 기술연구소) ;
  • 이동환 (한불화장품(주) 기술연구소) ;
  • 김진화 (한불화장품(주) 기술연구소) ;
  • 이범천 (한불화장품(주) 기술연구소) ;
  • 안성관 (건국대학교 생물화학공학부) ;
  • 최태부 (건국대학교 생물화학공학부) ;
  • 표형배 (한불화장품(주) 기술연구소)
  • Published : 2006.03.03

Abstract

In this study, the effect of oligopeptide ($Oligosproutin^{(R)}$) from sprouted black rice was evaluated for possible improvement in skin elasticity. We examined the changes in gene expression on oligopeptide-treated HaCaT cells using DNA microarray analysis. As a result, oligopeptide treatment showed a differential expression ratio of more than 2-fold : 745 genes were activated and 1011 genes were repressed. One of the most interesting findings is a 2-fold increase in hyaluronan synthase 2 (HAS 2) gene expression by oligopeptide. We also found that oligopeptide increased cell proliferation, HAS2 mRNA expression and intracellular ROS scavenging activity in HaCaT cells. A human clinical study which oil-in-water emulsion with oligopeptide was topically applied showed significant increase in skin elasticity. These results suggest that the sprouted black rice oligopeptide ($Oligosproutin^{(R)}$) can be effective anti-aging ingredient for cosmetics.

본 연구에서는 발아 검은 쌀로부터 분리한 올리고펩타이드($Oligosproutin^{(R)}$)의 피부 탄력 개선 효과에 대하여 연구하였다. 올리고펩타이드가 각질형성세포의 유전자 발현에 미치는 영향을 알아보고자 DNA microarray를 수행하였다. 각질형성세포에 올리고펩타이드를 처리하여 유전자의 발현이 2배 이상 증가하는 유전자는 745개이고, 2배 이상 감소하는 유전자는 1011개로 나타났다. 이 중 hyaluronan synthase 2 (HAS2)의 유전자 발현이 2배 이상 증가함을 확인하였다. 올리고펩타이드를 처리한 각질형성세포에서 세포활성 증가, HAS2 유전자 발현 증가, 세포내 항산화 효과를 확인하였다. 올리고펩타이드를 함유한 O/W 에멀젼을 이용한 임상실험에서 피부의 탄력 개선 효과를 확인하였다. 본 연구를 통하여 발아 검은 쌀로부터 분리한 올리고펩타이드는 피부 탄력 개선을 주는 항노화 화장품 개발에 응용될 수 있을 것이라 기대된다.

Keywords

References

  1. J. S. Kum, B. K. Chio, H. Y. Lee, J. D. Park, and H. J. Park, Physicochemical properties of germinated brown rice, Korean J. Food Preserv., 11, 182(2004)
  2. R. Fleischmajer, J. S. Perlish, and R. I. Bashey, Human dermal glycosarninoglycans and aging, Biochem Biophys. Acta., 279, 265 (1972) https://doi.org/10.1016/0304-4165(72)90142-0
  3. M. O. Longas, C. S. Russell, and X. Y. He, Evidence for structural changes in dermatan sulfate and hyaluronic acid with aging, Carbohydr. Res., 159, 127 (1987) https://doi.org/10.1016/S0008-6215(00)90010-7
  4. I. Gheretich, T. Lotti, G. Campanile, C. Grappone, and G. Dini, Hyaluronic acid in cutaneous intrinsic aging, Int. J.Dermatol., 33, 119 (1994)
  5. P. Heldin, T. C. Laurent, and C. H. Heldin, Effect of growth factors on hyaluronan synthesis in cultured human fibroblasts, Biochem J., 258, 919 (1989) https://doi.org/10.1042/bj2580919
  6. P. Heldin, T. Asplund, D. Ytterbeg, S. Thelin, and T. C. Laurent, Characterization of the molecular mechanism involved in the activation of hyaluronan synthetase by platelet-derived growth factor in human mesothelial cells, Biochem J., 283, 165 (1992) https://doi.org/10.1042/bj2830165
  7. M. Suzuki, T. Asplund, H. Yamashita, C. H. Heldin, and P. Heldin, Stimulation of hyaluronan biosynthesis by platelet-derived growth factor-BB and transforming growth factor- $\beta$1 involves activation of protein kinase C, Biochem J., 307, 817 (1995) https://doi.org/10.1042/bj3070817
  8. E. Tirone, C. D. Alessandris, V. C. Hascall, G. Siracusa, and A. Salustri, Hyaluronan synthesis by mouse cumulus cells is regulated by interactions between follicle-stimulation hormone (or epidermal growth factor) and a soluble growth factor) and a soluble factor (or transforming factor-$\beta$1), J. Biol. Chem., 272, 4787(1997) https://doi.org/10.1074/jbc.272.8.4787
  9. R. Tammi, J. A. Ripellino, R. U. Margolis, H.I. Maibach, and M. Tammi, Hyaluronate accumulation in human epidermis treated with retinoic acid in skin organ culture, J Invest Dermatiol., 92, 326 (1989) https://doi.org/10.1111/1523-1747.ep12277125
  10. H. Akiyama, M. Saito, G. Qiu, T. Toida, and T. Imanari, Analytical studies on hyaluronic acid synthesis by normal human epidermal keratinocytes cultured in a serum-free medium, Biol. Pharm Bull., 17, 361 (1994) https://doi.org/10.1248/bpb.17.361
  11. H. Sobel and R. A. Cohen, Effect of estradiol on hyaluronic acid in the skin of aging mice, Steroids, 16, 1 (1970) https://doi.org/10.1016/S0039-128X(70)80090-3
  12. J. P. Bentley, R. M. Brenner, A. D. Linstedt, N. B. West, K. S. Carlisle, B. C. Rokosova, and N. MacDonald, Increased hyaluronate and collagen biosynthesis and fibroblast estrogen receptors in macaque sex skin, J Invest. Dermatol., 87, 668 (1986) https://doi.org/10.1111/1523-1747.ep12456614
  13. K. Miyazaki, T. Hanarnizu, R. Iizuka, and K. Chiba, Genistein and daidzein stimulate hyaluronic acid production in transformed human keratinocyte culture and hairless mouse skin, Skin Phurracol, Appl. Skin Physiol., 15, 175 (2002) https://doi.org/10.1159/000063546
  14. P. H. Weigel, V. C. Hascall, and M. Tammi, Hyaluronan synthease, J Biol. Chern, 272, 13997 (1997) https://doi.org/10.1074/jbc.272.22.13997
  15. J. P. Pienimaki, K. Rilla, C. Fulop, R. K. Sironen, S. Karvinen, S. Pasonen, M. J. Lammi, R. Tammi, and V. C. Hascall, Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan, J Biol. Chem.,276, 20428 (2001) https://doi.org/10.1074/jbc.M007601200
  16. Mosmann T, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. methods, 65, 55 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  17. S. Y. Sea, E. Y. Kim, H. Kim, and B. J. Gwang, Neuroprotective effect of high glucose agains NMDA, free radical and oxygen-glucose deprivation through enhanced mitochondrial potentials, J. Neurosci, 19, 8849 (1999)
  18. I. D. Trayner, A. P. Rayner, G. E. Freeamn, and E. Farzaneh, Quantitative multiwell myeloid differentiation assay using dichlorodihydrofluorescein diacetate ($H_2$DCFDA) or dihydrorhodamine 123 ($H_2$R123), J. Immunol. Methods, 186, 275 (1995) https://doi.org/10.1016/0022-1759(95)00152-Z
  19. . Y. Tampo, S. Kotarnraju, C. R. Chitambar, S. V. Kalivendi, A. Keszler, J. Joseph, and B. Kalyanaraman, Oxidative stress-induced iron signaling is responsible for peroxide-dependent oxidation of dichlorodihydrofluorescein in endothelial cells, Circ. Res., 92, 56 (2003) https://doi.org/10.1161/01.RES.0000048195.15637.AC