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NOTE ON COMMUTING TOEPLITZ OPERATORS
ON THE PLURIHARMONIC BERGMAN SPACE

Boo RiM CHOE aAND KYE Sook Nam

ABSTRACT. We obtain a characterization of commuting Toeplitz
operators with holomorphic symbols acting on the pluriharmonic
Bergman space of the polydisk. We also obtain a characterization of
normal Toeplitz operators with pluriharmonic symbols. In addition,
some results for special types of semi-commutators are included.

1. Introduction

For a fixed integer n > 2, we shall let D™ denote the unit polydisk
which is the cartesian product of n copies of the unit disk D in the
complex plane C. Also, let LP(D") = LP(D™,dV,) denote the usual
Lebesgue space where dV,, is the volume measure on D™ normalized to
have total mass 1.

Recall that a complex-valued function f € C?(D") is said to be pluri-
harmonic if

0;0kf =0, j5,k=12...,n.

Here and elsewhere, 0; denotes the complex partial differentiation with
respect to the j-th variable. The pluriharmonic Bergman space b(D™)
is then the space of all pluriharmonic functions in L?(D"?). It is well
known that b%2(D") is a closed subspace of L?(D™), and hence is a Hilbert
space. Each point evaluation is easily verified to be a bounded liner
functional on b*(D"). Hence, for each z € D", there exists a unique
function R, € b%(D")-called the pluriharmonic Bergman kernel-that has
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the reproducing property:

f(z) = o f(w) R (w) dVy, (w)

for every f € b*(D™). From this reproducing formula, it follows that
the Hilbert space orthogonal projection @ from L?(D™) onto b*(D") is
realized as an integral operator

L) Q) = / () Ra(w) dVa(w), 2 € D"

Dn

for ¢ € L*(D™).

As is well-known, a function f € C?(D") is pluriharmonic if and only
if it admits a decomposition f = g+ A, where g and h are holomorphic.
See Chapter 2 of [5]. Moreover, if f € 4>(D"), then it is not hard to
see g,h € A%2(D"™). Here, A%(D") denotes the well-known holomorphic
Bergman space which consists of all holomorphic functions in L2(D").
As a result of this observation we see the following simple relation:

b?(D™) = A%(D™) + A2(Dn).
This yields
(1.2) R,=K,+K,—1,

where K, denotes the well-known holomorphic Bergman kernel whose
explicit formula is given by

n

1
Kz(w):H(—l—_E]z)—y’ Z,wEDn.
=1
By (1.1) and (1.2), the orthogonal projection @ admits the integral
representation

(13) Q) = [ o) (Falw) + K.w) 1) dVa(w), 2 € D"
for functions ¢ € L2(D™).

For v € L?(D"), the Toeplitz operator T, with symbol u is defined
by

Tuf = Q(uf )

for f € ¥*(D™). The operator T, is densely defined. In fact, we have
Q(uf) € b*(D™) for any bounded holomorphic function f on D,

Here, we are concerned with the characterizing problem of symbols of
commuting Toeplitz operators. This problem has been studied by several
authors in case of the holomorphic Bergman spaces. In [1], Axler and
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Cugkovié first obtained a complete description of harmonic symbols of
commuting Toeplitz operators on the Bergman Space A%(D). Later, this
result has been extended to various domains such as the annulus ([4]),
the ball ([9]) and the polydisk ([2], [8]).

In case of the pluriharmonic Bergman space, the problem is more
subtle and less is known. The case of pluriharmonic Bergman space was
first studied on the unit disk ([3]) and then on the ball ([6]). Here, we
study the same on the polydisk. Our results are parallel to those of [6].
Our first result is the characterization of holomorphic symbols for which
agsociated Toeplitz operators are commuting.

THEOREM 1.1. Let f, g € A%2(D™). Then TyT, = T,Ts on b*(D") if
and only if f, g and 1 are linearly dependent.

Recall that (a densely defined) linear operator on a Hilbert space is
said to be normal if it commutes with its adjoint operator. We have
the following characterization of normal Toeplitz operators with pluri-
harmonic symbols.

THEOREM 1.2. Let u € b*(D"). Then T,, is normal on b*(D") if and
only if u(D"™) is a part of a line in C. In particular, for f € A%(D™), Ty
is normal if and only if f is constant.

Section 2 is devoted to the proofs of Theorem 1.1 and Theorem 1.2.
In Section 3, some results for special types of semi-commutators are
included.

2. Proofs

We first introduce some notations. Let z = (21,...,2k,...,2,) € D"
be an arbitrary point. For 1 < k < n, we denote for simplicity

Zy = (zl,...,zk-1,2k+1,---azn)-
For A € D, we let

(/\a ék:) = (zlv <o Rk—1, )‘7 Ze+1y-- - Zn)-
Also, we use the conventional multi-index notations. That is, for an
ordered n-tuple a = (o, ..., an) of nonnegative integers, we let

a1

ol =an oo, 2= I

.. x0n
Zz 2

on,

In what follows, A'(D") denotes the space consisting of all holomor-
phic functions in L'(D™). The notation dA means the area measure on
D normalized to have total mass 1.
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LemMA 2.1. Let f € AY(D"™). Then, f(a,-) € AY(D"!) for every
a€D.

Proof. Let a € D. Then, for any w € D" !, we have by subhar-
monicity

1
fla,w S—-—/ Fx w)| dA(X
ol € e [ OwlaAry
o/
< A, w)| dA(N).
< L PO wldaw)
Now, integrating with respect to dV;_i(w), we conclude f(a,-) € Al
(D™1). The proof is complete. a

The following lemma is proved for p = 2 in Lemma 2 of [3] and the
same proof works for p = 1.

LEMMA 2.2. Let ¢ € AY(D). Then, we have

AP(N) 1 1
/Dmdfl()\)—alb(a) a2/0 Y(¢) d¢

for each a € D.

In what follows, P denotes the Bergman projection, which is the
Hilbert space orthogonal projection from L?(D™) onto A%(D"). As is
well known, the projection P is represented by an integral operator

(2.1) me=/ymﬁmwmw,zaw

for ¢ € L?(D™).

Note that, via the integral representation (2.1), P extends to an in-
tegral operator from L!(D") into the space of holomorphic functions on
D™. Moreover, it is well known that

(2.2) P(f)=f and P(f)=f(0)

for f € AY(D™). Similarly, via the integral representation (1.3), Q ex-
tends to an integral operator from L!'(D") into the space of plurihar-
monic functions on D". Note that @ can be written in terms of P by
(1.3) and (2.1):

(2.3) Q(p) = P(p) + P(@) — P(»)(0)

for p € L1(D™). In addition, we see from (2.2) and (2.3) that

(2.4) Q) =f
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for f € A1(D"). The following property of Bergman integrals are useful
for our purpose.

LEMMA 2.3. Let f € AY(D"). Then, the following hold.
(a) For z € D™ and 1 §k<n we have

P@if)(z) = / £(G 2)
(b) If £(0) = 0, then

Plux]) = Pef)(0) = 50 (0).

Proof. Fix k and let 2 € D™. Then, for each wy € D, the function
5+ f(wy; 2) belongs to A'(D"!) by Lemma 2.1. Thus, we have

5 . 1 .
f(wk; Zk) = / f(wk;wk) H T o= an_l(Wk), wg € D.
Dn-1 £k (1 - Z]w])
Now, multiply Wy(1 — zxWx)~2 on both sides of the above and then
integrate with respect to the measure dA(wy). The result is

P@nf)(2) = / D (083 2] 5y

(1- kak)2
- ;;f(Z) -2 /0 £(C3) de,

where the second equality holds by Lemma 2.2. This proves (a).
Next, assume f(0) = 0 and let

Za]w] + Z aqw®
lar]>2
be the power series expansion of f at the origin. Then we have
(2.5) P(uwf) = Z a; P(wpw;) + Z o P(ww®).
o] >2

For the first sum of the above, note that we have by (a)
_ 0 for j#Ek,
(2.6) P(wk'wj) = { 1 J 7&
2

for j=k.
For the second sum, we claim
(2.7) Pwgw®) =0 for |af>2.
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To see this, assume |a| > 2. In case ap < 1, pick j # k such that o > 1.
Then we have by the mean value property

e

/ Y gA@w;) =0
p (1= z;w;j)

for all z; € D. In case ay > 2, again by the mean value property, we
have

—Q —ap—1
WEW,© _ W 2
Jy e At = [ et A

o 2r o—(og—1)i0

(0373 9
/ / (1= rzze—i)2 dodr
for all z; € D. So, in either case, we see that

— _ wkwk ’LU X w;) =
Pli*)(2) = [ s dAw) 11 | e A =0

for z € D™. Thus (2.7) holds. Now, we conclude from (2.5), (2.6), and
(2.7)

= ar 1
P = — = - .
(wg f) 5 2alcf(0)
On the other hand, since

differentiation with respect to z; under the integral sign yields
0(0) =2 [ f(w)medVi(w) = 2P@f)(0)
Dn
This proves (b). The proof is complete. O

As a consequence of Lemma 2.3, we have the following.

LEMMA 2.4. Let f € AY(D") and 1 < k < n. Then, we have 8 f =0
if and only if P(wi f) = 0.

Proof. First, suppose Oy f = 0. Since f is independent of z, we have
2
| tcardc=ase), zepr
0

and therefore P(wyf) = 0 by (a) of Lemma 2.3.
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Conversely, suppose P(@f) = 0. By Lemma 2.3, we have
2
SIOR AFIGERES

Thus, differentiating with respect to zx, we obtain dxf = 0. The proof
is complete. 0

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. The sufficiency is trivial. We now prove the
necessity. So, suppose 15T, = TyTy on b%(D™). Without loss of gener-
ality, we may assume f and g are both nonconstant. We may further
assume that f(0) = g(0) = 0. With these assumptions, we need to show
f = ag for some constant a.

Let 1 <k <n. By Lemma 2.3 and (2.3), we have

Tf(TU_k) = Q(wif)
= P(wif) + P(wxf) — P(wif)(0) = P(wif),

so that
T,Ts(Wx) = Ty(P(wrf)) = gP(Wrf),

where the second equality holds by (2.4). Now, since 77Ty, = T Ty, we
have by symmetry

(2.8) fP(@rg) = gP@rf), k=1,...,n.

By Lemma 2.4 and (2.8), we see that Oy f = 0 if and only if 9xg = 0.
Thus, by changing the coordinate system if necessary, we may write

f(Z) = f(zh' . ')ZT)> g(z) = g(Zl, cee ,zr),

where 7 < n is chosen so that 09 # 0 for j < r and 9;f = 9;9 = 0 for
j>r. Let 1 <k <r. Since fP(Wrg) = gP(Wkf), a little manipulation
using Lemma 2.3 yields

f(2)Gi(2) = g(2)Fi(2), =€ D",
where
R = [T 1Ga . o = [t
Note OpF), = f and G = g. Thus, we have
(2.9) (OkFy )Gy = (0kGy) F-

Now consider

Vi = {% € D" | Gi(-; ) # 0}.
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Then, it follows from (2.9) that

Ok <&>(~;ék):0 on D

Gy
for each fixed Z; € Vj. That is,
(2.10) Fr(2) = c(2x)Gr(2), 2k € D, 2 € Vg,

where the coefficient ¢(2y) is independent of 2. Let By = {z € D" |z €
D, 3, € Vi}. Then, differentiating both sides of (2.10) with respect to
2k, we have

f(z) = c(2)g(2), 2 € By

Since k is arbitrary, it follows that
f(z) =ag(z), zeni_1Ek

for some constant a.

Now, it remains to show that M} _; E is dense in D". Note that each
V} is open in D™! by continuity. Also, it is not hard to verify that each
V4 is dense in D™~1. In fact, if some V; is not dense in D®~!, then there
exists some open subset U of D"~! such that

Gk(zk;ék) =0, 2,€D, 2, €U

Hence, G}, vanishes on some open subset of D™ and thus on all of D",
which is a contradiction. It follows that each E}, is both open and dense
in D™. Thus, by Baire’s theorem, we conclude that N}_; E}, is dense in
D™, as desired. The proof is complete. O

It is easy to see that the adjoint operator of T, is T5. Thus, consid-
ering normal Toeplitz operators with holomorphic symbols f € A%2(D"),
and considering the conjugates of the coordinate functions as in the proof
of Theorem 1.1, one is led to the following system of integral equations:

(2.11) P(fP(wif)) = P(wilf]?)

for k =1,2,...,n. It turns out that just one of the above equations is
enough to conclude Theorem 1.2.

PROPOSITION 2.5. Suppose f € A?(D™) and (2.11) holds for some k.
Then f = 0.

Proof. Without loss of generality, let £ = 1. From (2.1), P is the
operator of integration against the Bergman kernel. Differentiating both
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sides of the equation (2.11) with respect to the first variable under the
integral sign and evaluating at the origin, we get

@12) [ SEP@HER A = [ aPIER ).

Let f(z) = Ea aq2® be the power series expansion of f at the origin. A
straightforward calculation using Lemma, 2.3 yields

(43
P@1)(2)21 =) _8ay +1a1 z*,
«

so that

On the other hand, we have

/Dn 2121 f (2) [ dVao( Zlaal / 2% dVia(2)

It follows from (2.12) that
1+ on \yr 1
0= 2 -
;laal (2+a1 1+C¥1)j_1:111+0éj

1 ool
2

= Qa

Xo;l al (2+a1)(1+a1)j1;[11+aj

and thus aq = 0 for all . Consequently, f is identically 0. The proof is
complete. O

Having Proposition 2.5, we now turn to the proof of Theorem 1.2.
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Proof of Theorem 1.2. The theorem follows from exactly the same
argument as in the proof of Theorem 13 of [6]. a

3. Semi-commutators

In this section we consider the semi-commuting property of Toeplitz
operators. All the arguments are parallel to those of [6]. The key step
in [6] is the ball version of the following proposition.

ProPOSITION 3.1. Suppose f,g € A%(D") and
(3.1) Pwifg) = fP(wkg), 1<k<n.
Then, either f is constant or g = 0.

Proof. Assume (3.1) and g # 0. We need to show that f is constant.
By (3.1) and Lemma 2.3 we have

(3.2) Hi(z) = f(2)Gp(z), z2€D", 1<k<n,

where

Hy(z) = /0 Y HG A A G Crls) = /0 ™ 9(¢ 20) dc.

Differentiating both sides of (3.2), we have (8xf)Gx = 0 for each k.
Since g # 0, we have Gy, # 0 for each k. It follows that 8 f = 0 for each
k. Thus f is constant. The proof is complete. O

Now, all the results below can be proved by repeating exactly the
same argument as in the proofs of Lemma 14, Theorem 15, Corollary
16, and Corollary 18 of [6]. Note that the class of symbols of Toeplitz
operators is naturally extended to L!(D"™) by (2.3).

PROPOSITION 3.2. Let u,v € b2(D"™). Assumeu = f+3g, v = h+k for
holomorphic functions f,g,h and k. If Ty = T,T, on b*(D"), then at
least one of f and h is constant, and at least one of g and k is constant.

THEOREM 3.3. Let f,g € A*(D™). Then Ty, = TyT, on b*(D") if
and only if either f or g is constant.

THEOREM 3.4. Let u € b2(D"). Then T,» = T, T,, on b*(D") if and
only if u is constant,.

THEOREM 3.5. Let u € b*>(D"). Then Tjw2 = T Tg on b*(D™) if and
only if u is constant; T,z = TgTy, on b%(D™) if and only if u is constant.
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