RELATIVE INTEGRAL BASES
OVER A RAY CLASS FIELD

Soyoung Choi

Abstract. Let K be a number field, K_n its ray class field with conductor n and L a Galois extension of K containing K_n. We prove that L/K_n has a relative integral basis (RIB) under certain simple condition. Also we reduce the problem of the existence of a RIB to a quadratic extension of K_n under some condition.

1. Introduction

Let L be an algebraic number field, K be a subfield of it. Let \mathcal{O}_L and \mathcal{O}_K be the rings of integers in L and K, respectively. If \mathcal{O}_L is free as \mathcal{O}_K-module, then we say that L/K has a relative integral basis (RIB). Artin in [1] raised the problem: when does L/K has a relative integral basis?

XianKe Zhang and FuHua Xu in [5] proved the existence of relative integral bases for extensions of n-cyclic number fields under some conditions. Mario Daberkow and Michael Pohst in [2] studied relative integral bases in relative quadratic extensions. Elena Soverchia in [4] showed the following: Let H be the Hilbert class field of an algebraic number field K and L be a Galois extension of K containing H. If the order of $\text{Gal}(L/H)$ is odd or if the 2-Sylow subgroups of $\text{Gal}(L/H)$ are not cyclic, then L/H has a relative integral basis.

It is natural to investigate analogues of Soverchia’s work for more general class fields of K. Let K be an algebraic number field and K_n be its ray class field with conductor n and with genus number 1 over K. Let L/K be a Galois extension containing K_n. We suppose that L/K is unramified at all primes \mathcal{B} dividing $n\mathcal{O}_{K_n}$. For the convenience, we
assume that \(n \) is an integral divisor. We denote the discriminant of a field basis of \(L/K_n \) by \(\Delta \). In this paper, we will prove that \(L/K_n \) has a relative integral basis if \(h \) is an odd number or if \(\Delta \) is contained in \(K_n^2 \).

We also reduce the problem of the existence of a RIB to a quadratic extension of \(K_n \) if \(h \) is an even number and \(\Delta \) is not contained in \(K_n^2 \), where \(h \) be the class number of the field \(K_n \) (Theorem 4). We emphasize that our results (with respect to the ray class field \(K_n \) of \(K \)) generalize Sovorichia's results (with respect to the Hilbert class field \(H \) of \(K \)).

2. Relative integral basis over \(K_n \)

To prove our theorem, we need some lemmas.

We denote the relative discriminant of a field extension \(E/F \) by \(d(E|F) \).

Lemma 1. Let \(E/F \) an extension of number fields. Then there exists a non-zero fractional ideal \(\mathcal{B} \) in \(F \) such that \(d(E|F) = \langle \mathcal{B} \rangle^2 \), where \(\langle \mathcal{B} \rangle \) is the discriminant of a field basis of \(E/F \). Moreover, \(E/F \) has a RIB if and only if \(\mathcal{B} \) is principal.

Proof. See [1].

Lemma 2. Let \(E/K \) be a Galois extension of number fields containing \(K_n \). Suppose that \(E \) is unramified at all primes \(\mathcal{B} \) dividing \(n \mathcal{O}_{K_n} \). Then \(d(E|K_n) \) is stable under the action of \(\text{Gal}(K_n/K) \).

Proof. Let \(\mathcal{D}_{E/K} \) (respectively, \(\mathcal{D}_{E/K_n} \)) be the different of \(\mathcal{O}_E \) over \(K \) (respectively, \(K_n \)). Since \(\mathcal{D}_{E/K} \) (respectively, \(\mathcal{D}_{E/K_n} \)) is stable under the action of \(\text{Gal}(E/K) \) (respectively, \(\text{Gal}(E/K_n) \)), \(N_{E/K_n} \mathcal{D}_{E/K_n} = d(E|K_n) \) and \(K_n \) is unramified at any prime \(p \) in \(K \) which is below a prime dividing \(d(E|K_n) \), we have \(d(E|K_n) = p_1^{t_1} \cdots p_r^{t_r} \) for some prime ideals \(p_i \) in \(K \) and some integers \(t_i \). Hence \(d(E|K_n) \) is stable under the action of \(\text{Gal}(K_n/K) \).

Lemma 3. Suppose that the genus number of \(K_n \) over \(K \) is equal to 1. Then every ideal of \(K_n \) prime to \(n \) and stable under the action of \(\text{Gal}(K_n/K) \) is principal.

Proof. Let \(H \) be the Hilbert class field of \(K_n \) and \(G = \text{Gal}(H/K) \). Since the genus number of \(K_n \) over \(K \) is equal to 1, we have \(\text{Gal}(H/K_n) = G' \) and \(\text{Gal}(K_n/K) = G gon G' \), where \(G' \) is the commutator subgroup of \(G \).

Let \(I_n(K) \) (respectively, \(I(K_n) \)) be the ideal group generated by all fractional ideals in \(K \) prime to \(n \) (respectively, by all fractional ideals in \(K_n \)) and \(P_n,1(K) \) (respectively, \(P(K_n) \)) be the subgroup of \(I_n(K) \) generated
by the principal ideals $\beta \mathcal{O}_K$ with $\beta \in \mathcal{O}_K$ and $\beta \equiv 1 \mod n\mathcal{O}_K$ (respectively, of $I(K_n)$ generated by the principal ideals in K_n) where \mathcal{O}_K is the ring of integers in K. Naturally, we obtain a chain of maps

$$G \xrightarrow{\text{natural map}} G' \xrightarrow{[,K]^{-1}} \frac{I_n(K)}{P_{n,1}(K)} \xrightarrow{\text{natural map}} \frac{I(K_n)}{P(K_n)} \xrightarrow{[,K_n]} G',$$

where $[,]_K$ and $[,]_{K_n}$ are Artin maps. A brief check of the coset representatives shows that this chain of maps is a transfer V of G into G'. By the principal ideal theorem of group theory, $V(\sigma) = 1$ for all $\sigma \in G$. This implies our assertion. \qed

Theorem 4. Let K be an algebraic number field and K_n be its ray class field with conductor n and with genus number 1 over K. Let L/K be a Galois extension containing K_n. We suppose that L/K is unramified at all primes \mathcal{B} dividing $n\mathcal{O}_K$ and that n is an integral divisor. Let h be the class number of the field K_n. Then we have the following:

1. If h is an odd number or if Δ is contained in K_n^2, then L/K_n has a RIB.

2. If h is an even number and if Δ is not contained in K_n^2, then for the field $M = K_n(\sqrt{\Delta})$, L/K_n has a RIB if and only if M/K_n has a RIB.

Proof. Let \mathcal{B} be a fractional ideal in K_n such that $d(L|K_n) = \Delta \mathcal{B}^2$. Lemma 2 and Lemma 3 imply that $d(L|K_n)$ is principal. Hence if h is an odd number, then \mathcal{B} is principal. Suppose that Δ is contained in K_n^2. Then $\sqrt{\Delta} \mathcal{B}$ is stable under the action of $Gal(K_n/K)$. By Lemma 2 and Lemma 3, $\sqrt{\Delta} \mathcal{B}$ is principal. This implies that \mathcal{B} is principal. Now we assume that h is an even number and that Δ is not contained in K_n^2. We let \mathcal{D} be a fractional ideal in K_n such that $d(M|K_n) = 4\Delta \mathcal{D}^2$. From Lemma 2, $\mathcal{D} \mathcal{B}^{-1}$ is stable under the action of $Gal(K_n/K)$. Hence $\mathcal{D} \mathcal{B}^{-1}$ is principal. These and Lemma 1 prove the assertions. \qed

Remark. Replacing H in [4, Lemma 2.2] by K_n, we obtain the following equivalent statements: the order of $Gal(L/K_n)$ is odd or the 2-Sylow subgroup of G are not cyclic if and only if Δ is contained in K_n^2.

Example. For any prime p, let $\zeta_p = e^{2\pi i/p}$ and K the rational number field. Then K_p is the maximal real subfield $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$ of p-th cyclotomic number field $\mathbb{Q}(\zeta_p)$ and satisfies the conditions in Theorem 4. Indeed, in narrow sense the field $\mathbb{Q}(\zeta_p)$ has genus number 1 over K from the genus
number formula
\[g(\mathbb{Q}(\zeta_p)) = \frac{e(p)}{[\mathbb{Q}(\zeta_p) : K]}, \]
given in [3, p.53], where \(e(p)\) denotes the ramification index of the prime \(p\) in \(\mathbb{Q}(\zeta_p)/K\). Thus the field \(K_p\) has genus number 1 over \(K\).

References

FR 6.1 MATHEMATIK, UNIVERSITÄT DES SAARLANDES, POSTFACH 151150, D-66041 SAARBRÜCKEN, GERMANY
E-mail: young@math.uni-sb.de & young@math.kaist.ac.kr