RELATIVE INTEGRAL BASES OVER A RAY CLASS FIELD

SoYoung Choi

ABSTRACT. Let K be a number field, K_n its ray class field with conductor \mathfrak{n} and L a Galois extension of K containing K_n . We prove that L/K_n has a relative integral basis (RIB) under certain simple condition. Also we reduce the problem of the existence of a RIB to a quadratic extension of K_n under some condition.

1. Introduction

Let L be an algebraic number field, K be a subfield of it. Let \mathcal{O}_L and \mathcal{O}_K be the rings of integers in L and K, respectively. If \mathcal{O}_L is free as \mathcal{O}_K -module, then we say that L/K has a relative integral basis (RIB). Artin in [1] raised the problem: when does L/K has a relative integral basis?

XianKe Zhang and FuHua Xu in [5] proved the existence of relative integral bases for extensions of n-cyclic number fields under some conditions. Mario Daberkow and Michael Pohst in [2] studied relative integral bases in relative quadratic extensions. Elena Soverchia in [4] showed the following: Let H be the Hilbert class field of an algebraic number field K and L be a Galois extension of K containing H. If the order of Gal(L/H) is odd or if the 2-Sylow subgroups of Gal(L/H) are not cyclic, then L/H has a relative integral basis.

It is natural to investigate analogues of Soverchia's work for more general class fields of K. Let K be an algebraic number field and $K_{\mathfrak{n}}$ be its ray class field with conductor \mathfrak{n} and with genus number 1 over K. Let L/K be a Galois extension containing $K_{\mathfrak{n}}$. We suppose that L/K is unramified at all primes \mathcal{B} dividing $\mathfrak{n}\mathcal{O}_{K_{\mathfrak{n}}}$. For the convenience, we

Received September 7, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 11R04, 11R29, 11R37.

Key words and phrases: relative integral bases, ray class field.

This work was supported by the Korea Research Foundation Grant.(KRF-2005-214-M01-2005-000-10100-0).

assume that \mathfrak{n} is an integral divisor. We denote the discriminant of a field basis of $L/K_{\mathfrak{n}}$ by \triangle . In this paper, we will prove that $L/K_{\mathfrak{n}}$ has a relative integral basis if h is an odd number or if \triangle is contained in $K_{\mathfrak{n}}^2$. We also we reduce the problem of the existence of a RIB to a quadratic extension of $K_{\mathfrak{n}}$ if h is an even number and \triangle is not contained in $K_{\mathfrak{n}}^2$, where h be the class number of the field $K_{\mathfrak{n}}$ (Theorem 4). We emphasize that our results (with respect to the ray class field $K_{\mathfrak{n}}$ of K) generalize Soverchia's results (with respect to the Hilbert class field H of K).

2. Relative integral basis over K_n

To prove our theorem, we need some lemmas. We denote the relative discriminant of a field extension E/F by d(E|F).

LEMMA 1. Let E/F an extension of number fields. Then there exists a non-zero fractional ideal \mathcal{B} in F such that $d(E|F) = \Diamond \mathcal{B}^2$, where \Diamond is the discriminant of a field basis of E/F. Moreover, E/F has a RIB if and only if \mathcal{B} is principal.

LEMMA 2. Let E/K be a Galois extension of number fields containing K_n . Suppose that E is unramified at all primes \mathcal{B} dividing $\mathfrak{n}\mathcal{O}_{K_n}$. Then $d(E|K_n)$ is stable under the action of $Gal(K_n/K)$.

Proof. Let $\mathfrak{D}_{E/K}$ (respectively, \mathfrak{D}_{E/K_n}) be the different of \mathcal{O}_E over K (respectively, K_n). Since $\mathfrak{D}_{E/K}$ (respectively, \mathfrak{D}_{E/K_n}) is stable under the action of Gal(E/K) (respectively, $Gal(E/K_n)$), $N_{K_n}^E \mathfrak{D}_{E/K_n} = d(E|K_n)$ and K_n is unramified at any prime \mathfrak{p} in K which is below a prime dividing $d(E|K_n)$, we have $d(E|K_n) = \mathfrak{p}_1^{t_1} \cdots \mathfrak{p}_r^{t_r}$ for some prime ideals \mathfrak{p}_i in K and some integers t_i . Hence $d(E|K_n)$ is stable under the action of $Gal(K_n/K)$.

LEMMA 3. Suppose that the genus number of K_n over K is equal to 1. Then every ideal of K_n prime to $\mathfrak n$ and stable under the action of $Gal(K_n/K)$ is principal.

Proof. Let H be the Hilbert class field of K_n and G = Gal(H/K). Since the genus number of K_n over K is equal to 1, we have $Gal(H/K_n) = G'$ and $Gal(K_n/K) = G/G'$, where G' is the commutator subgroup of G. Let $I_n(K)$ (respectively, $I(K_n)$) be the ideal group generated by all fractional ideals in K prime to \mathfrak{n} (respectively, by all fractional ideals in K_n) and $P_{\mathfrak{n},\mathfrak{l}}(K)$ (respectively, $P(K_n)$) be the subgroup of $I_n(K)$ generated

by the principal ideals $\beta \mathcal{O}_K$ with $\beta \in \mathcal{O}_K$ and $\beta \equiv 1 \mod \mathfrak{n} \mathcal{O}_K$ (respectively, of $I(K_{\mathfrak{n}})$ generated by the principal ideals in $K_{\mathfrak{n}}$) where \mathcal{O}_K is the ring of integers in K. Naturally, we obtain a chain of maps

$$G \longrightarrow_{\text{map}}^{\text{natural}} \frac{G}{G'} \longrightarrow^{[\cdot,K]^{-1}} \frac{I_{\mathfrak{n}}(K)}{P_{\mathfrak{n},\mathfrak{l}}(K)} \longrightarrow_{\text{map}}^{\text{natural}} \frac{I(K_{\mathfrak{n}})}{P(K_{\mathfrak{n}})} \longrightarrow^{[\cdot,K_{\mathfrak{n}}]} G' ,$$

where $[\cdot, K]$ and $[\cdot, K_n]$ are Artin maps. A brief check of the coset representatives shows that this chain of maps is a transfer V of G into G'. By the principal ideal theorem of group theory, $V(\sigma) = 1$ for all $\sigma \in G$. This implies our assertion.

THEOREM 4. Let K be an algebraic number field and K_n be its ray class field with conductor $\mathfrak n$ and with genus number 1 over K. Let L/K be a Galois extension containing K_n . We suppose that L/K is unramified at all primes $\mathcal B$ dividing $\mathfrak n\mathcal O_{K_n}$ and that $\mathfrak n$ is an integral divisor. Let h be the class number of the field K_n . Then we have the following:

- (1) If h is an odd number or if \triangle is contained in $K_{\mathfrak{n}}^2$, then $L/K_{\mathfrak{n}}$ has a RIB.
- (2) If h is an even number and if \triangle is not contained in $K_{\mathfrak{n}}^2$, then for the field $M = K_{\mathfrak{n}}(\sqrt{\triangle})$, $L/K_{\mathfrak{n}}$ has a RIB if and only if $M/K_{\mathfrak{n}}$ has a RIB.

Proof. Let \mathcal{B} be a fractional ideal in K_n such that $d(L|K_n) = \Delta \mathcal{B}^2$. Lemma 2 and Lemma 3 imply that $d(L|K_n)$ is principal. Hence if h is an odd number, then \mathcal{B} is principal. Suppose that Δ is contained in K_n^2 . Then $\sqrt{\Delta}\mathcal{B}$ is stable under the action of $Gal(K_n/K)$. By Lemma 2 and Lemma 3, $\sqrt{\Delta}\mathcal{B}$ is principal. This implies that \mathcal{B} is principal. Now we assume that h is an even number and that Δ is not contained in K_n^2 . We let \mathcal{D} be a fractional ideal in K_n such that $d(M|K_n) = 4\Delta\mathcal{D}^2$. From Lemma 2, $\mathcal{D}\mathcal{B}^{-1}$ is stable under the action of $Gal(K_n/K)$. Hence $\mathcal{D}\mathcal{B}^{-1}$ is principal. These and Lemma 1 prove the assertions.

REMARK. Replacing H in [4, Lemma 2.2] by K_n , we obtain the following equivalent statements: the order of $Gal(L/K_n)$ is odd or the 2-Sylow subgroup of G are not cyclic if and only if Δ is contained in K_n^2 .

EXAMPLE. For any prime p, let $\zeta_p = e^{\frac{2\pi i}{p}}$ and K the rational number field. Then K_p is the maximal real subfield $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$ of p-th cyclotomic number field $\mathbb{Q}(\zeta_p)$ and satisfies the conditions in Theorem 4. Indeed, in narrow sense the field $\mathbb{Q}(\zeta_p)$ has genus number 1 over K from the genus

number formula

$$g(\mathbb{Q}(\zeta_p)) = rac{e(p)}{[\mathbb{Q}(\zeta_p):K]}$$
 .

given in [3, p.53], where e(p) denotes the ramification index of the prime p in $\mathbb{Q}(\zeta_p)/K$. Thus the field K_p has genus number 1 over K.

References

- [1] E. Artin, Questions de base minimale dans la théorie des nombres algébriques, Colloques Internationauz du Centre National de la Recherche Scientifique, no. 24, Centre National de la Recherche Scientifique, Paris, 1950.
- [2] M. Daberkow and M. Pohst, On integral bases in relative quadratic extensions, Math. Comp. 65 (1996), no. 213, 319–329.
- [3] M. Ishida, The genus fields of algebraic number fields, Lecture Notes in Mathematics Vol 555, Springer-Verlag, Berlin-New York, 1976.
- [4] E. Soverchia, Relative integral bases over a Hilbert class field, J. Number Theory 97 (2002), no. 2, 199–203.
- [5] X. Zhang and F. Xu, Existence of integral bases for relative extensions of n-cyclic number fields, J. Number Theory 60 (1996), no. 2, 409-416.

FR 6.1 MATHEMATIK, UNIVERSITÄT DES SAARLANDES, POSTFACH 151150, D-66041 SAARBRÜCKEN, GERMANY

E-mail: young@math.uni-sb.de & young@math.kaist.ac.kr