Bull. Korean Math. Soc. 43 (2006), No. 1, pp. 81-99

A CURVATURE-LIKE TENSOR
FIELD ON A SASAKIAN MANIFOLD

YouNnGg-M1 KiMm

ABSTRACT. We investigate a curvature-like tensor defined by (3.1)
in Sasakian manifold of dimension> 5, and show that this ten-
sor satisfies some properties. Especially, we determine compact
Sasakian manifolds with vanishing this tensor and improve some
theorems concerning contact conformal curvature tensor and spec-
trum of Laplacian acting on p(0 < p < 2)-forms on the manifold
by using this tensor component.

1. Introduction

In their paper ([3]), S. Funabashi, H. S. Kim, J. S. Pak and the present
author have determined a new tensor field on a Kahler manifold which is
traceless component of the conformal curvature tensor. Moreover, this
tensor is invariant under concircular change. In particular, On a 2n-
dimensional Kéhler manifold the traceless component of the conformal

*
curvature tensor field C;.,* is given by

(1.1)

*

C’dcba
1
= Ry + %(Rdagcb — Rgap + 63Re — 6% Rap
— 84°¢ch + S Pap — ¢4 Scb + D" Sap + 283.0p" + 2¢0acSp")

+ 2 a a ! a
4;’2(,’1 _{_)i) (¢’d ¢Cb - ¢c d’db - 2¢dc¢b )
(2n? +5n+6)s ., o 2(n—2) ., “
B 4n?(2n — 1)(n+1) (839es = Ocgan) = n(2n — 1) (03 Rep = 05 Rap ),
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where here and in the sequel the indices a,b,c,d run over the range
{1,2,...,2n} and we use the Einstein convention with respect to this
index system. We denote by gpa, R 5% Rba, s and ¢p local components
of g, the curvature tensor, the Ricci tensor, the scalar curvature and ¢
of M, respectively.

In this paper, we define a new tensor field on a Sasakian manifold,

which is constructed from C, ,* by using the Boothby-Wang’s fibration
([2]), and study some properties of this new tensor field. Especially, we
determine compact Sasakian manifolds with vanishing this tensor and
improve some theorems concerning contact conformal curvature tensor
and spectrum of Laplacian acting on p(0 < p < 2)-forms on the manifold
by using this tensor component.

2. Preliminaries

Let M be a (2n + 1)-dimensional differential manifold of class C*°
covered by a system of coordinate neighborhoods {U ; z"} in which
there are given a tensor field ¢,” of type (1,1), a vector field £&® and
1-form 7); satisfying

(21)  olteh =0 +mE 6/ =0, m¢f=0, mE=1,

where here and in the sequel the indices h,1%,j, k,! run over the range
{1,2,...,2n + 1} and we use the Einstein convention with respect to
this index system. Such a set (¢,&,n) of a tensor field ¢, a vector field
£ and a 1-form 7 is called an almost contact structure and a manifold
with an almost contact structure an almost contact manifold. Suppose
that there is given, in an almost contact manifold, a Riemannian metric
g;ji such that

(2.2) gknd; o™ = gji — njmi, m = gin&",

then the almost contact structure is said to be metric and the manifold
is called an almost contact metric manifold. In an almost contact metric
manifold, the tensor field ¢;; = (,bjh ghi is skew-symmetric. If an almost
contact metric structure satisfies
1
G5 = 5(53'771' — 0inj)s

then the almost contact metric structure is called a contact structure. A
manifold with a normal contact structure is called a Sasakian manifold.
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Let M?"*! be a Sasakian manifold with Sasakian structure (¢, &,
gji)- Now we assume that the structure vector &' is regular. Then, as
is well known by Boothby and Wang ([2]), we can define a fibred space
{M?"+1 M?" g 7} with invariant Riemannian metric, where 7 is the
projection

T M2n+1 _ M2n,

M?" being the base manifold. Moreover, the base manifold M?" is a
Kéhler manifold with a Kéhler structure {¢,*, gsa }-

3. A curvature-like tensor field H

We define a tensor field H kjih on M2 by the lift of the C,,°.
Hence we have by definition

iji b= 6dcbaEkdchEibEha'

Now, transvecting (1.1) with E,*E;°E;°E" , we can easily see that
(3.1)
H;"

+ R mem; — ne€™ Ryi + n;€" Riy — 6, Sji + ;" Ski — S
+ 5" drs + 20k, 8," + 285 6,")
2n?—n-2 (n+2)s

b — . — .
1 2n(n + 1) + 4n?(n + 1)}(¢k bji — &5 P 20k5¢:")
2n? —Tn —6 2n2+5n+6)s |
- {Qn(n +1)(2n—1)  4n2(n+1)(2n - 1) }(0kg5i — 07 gki)
10n®>+19n + 6 (2n? 4 5n + 6)s h e
- {2”(” +1)2n—1) 4n2(n+1)(2n—1) Y(Onsms — 63mk)

2(n—-2)
~ n(2n—1)

8n®+2n? + 3n + 6 (2n? + 5n + 6)s
— 2n(n+1)(2n—1)  4n2(n+1)(2n — 1

((5;’CLRJ,L — (SJth, - Rj,;’l]kfh + kajﬁh)

)}(nkﬁhgji — gin;€"),

which is constructed from the traceless part of the conformal curvature
tensor field (1.1) in Kéhler manifold by using the Boothby-Wang’s fi-
bration ([2]), where s = R;;¢’* denotes the scalar curvature of M2"+1,
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R* = R;ig" and S;* = Sj;g*". From now on, we'll call this tensor the
horzzontal lift of the traceless part of the conformal curvature tensor.

By R = (Rkjih), Ry = (Rj;) and s we denote the Riemannian curva-
ture tensor, the Ricci tensor and the scalar curvature tensor, respectively.
For a tensor field T on M we denote by ||T|| the norm of T with respect
to g. Let M be a (2n+ 1)-dimensional Sasakian manifold with a normal
contact metric structure (¢, g,&,n). Thus, ¢ = (¢,;), £ = (£%), n = ()
are tensor field of type (1,1), (1,0), (0,1), respectively, and g = (g;:) is a
Riemannian metric, on M such that

819" = — 61 +mi€', M€ =1, $J€ =0, 1,9,° =0,
Gtsb; 0% = gji — MM M = EGsi
vk(;sjz = njéki’ an d’yza

where ¢;; = ¢,°gs; and V|, denotes the operator of covariant differenti-
ation with respect to the Levi-Civita connection. Then we have ([9])

(3.2)
Rijit€ = nkgji — 05 Gkis
Rijts®:" 01’ = Rijih — 9knji + GkiGin + OknBii — Okidjn,
1
§Rtsji¢ts = Rj1¢;" + (2n — 1)¢ji = Ryjsid"™,

(3.3) Ri&' = 2nm;, Rysj'¢,° = Ryi — 2nm;mi, Sji = —Syj,

where ¢/* = ¢,°g%*, Rejin = Ry;;*gen and Sji = ¢,* Ry
Define on M a tensor field Q = (Qj;:) by

S

Qji = Rji — (% )gyz (2n+1- 2_)7737%

With (3.3), we can easily verify the following equation.
1
(3.4) 1QI1% = ||IR1|)? - %52 + 25— 2n(2n +1).
A Sasakian manifold is said to be n-Einstein if Q = 0. For any n-Einstein

Sasakian manifold of dimension > 5, s is constant. Any 3-dimensional
Sasakian manifold is 7-Einstein, but in this case s may not be constant.
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Define on M a tensor field T' = (Tk;in) by

(3.5)
k+3 k—1

Trjin = Rijin — T(gkhgji — 9kigjn) — T(¢kh¢ji — dridjn

— 20k;bin — KRN + GeiNiTh — MeMRGji + MkNidin),

where k = S—_T?éj:_n—;gll By using (4.1), (4.2) and (4.4), we can easily verify

the following equation.
2 5 4(3n+ 1)5 dn(2n+1)(3n+1)

(36) ITIP? = I1RIP ~ oy s + =g 1

A Sasakian manifold of dimension > 5 is of constant ¢-sectional curva-
ture if and only if T' = 0 ([6]). Since Hj:p = Hyj, tgsn, we also consider
the curvature-like tensor Hyj;n from (3.1). The tensor field H satisfies
the following identities:
(3.7) Hijin = Hinkj; = —Hjgin = —Hrjna,

Hyjin + Hjikn + Higgn = 0,

9" Hijin = 0, E"Hyjin = 0, ¢*"Hyjur, = 0.

Using (3.1), (3.2), (3.3) and (3.4), we can check that

(3.8)
1=
8(n—5)(n—1)
— 2 2
= ”R” + n2(2n _ 1) ”Rlll
_ 2(4n® — 11n® - 2n + 10) 2. 4(6n* + 3n3 — 21n? — 4n + 20)
n3(n+1)(2n —1) n?(n+1)(2n - 1)

_ 4(2n 4+ 1)(6n* + 3n® — 21n° — 4n + 20)
n(n+1)(2n — 1) '

And by using (3.4), we have
(3.9)

2, 4BntD)
n(n +1) n+1
_4n(2n+1)(3n+1) 4 8(n —5)(n—1)
n+1 n?(2n — 1)

1H]* = ||R||* -

Q.
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Moreover by (3.6), we have the following equation

2 2, 8(n—5)(n—1) 2
(3.10) 2 =17 + =2 S el

By the way it is already shown in Theorem 3.3 that H =0 and Q =0
if and only if T'= 0.

We next recall definition and fundamental properties of D-homothetic
deformation due to S. Tanno ([10]), where D denotes the distribution
defined by a contact form.

D-homothetic deformation g — ¢ is defined by

*g5i = agji + a(a — L)n;mn,
for a positive constant . From *g;; we have ([10])
(3.11)

g™ = a7l g — a7 (a - 1)¢k¢,

*Rka‘h = Rkjih +(a— 1)(¢ki¢jh - ¢ji¢kh + 2¢kj¢z'h)
+(a—1)%m;6" —medMmi + (e — D{nw(gzi — mid;")
~05(gken”™ — m8") + mi(1m; 6" — med;")}

*Ri; = Rij — 2(a — 1) g + 2(a — 1) (noe + n + 1)memy,
xs=a"ls—2na"(a-1).

If (¢,€,m,9) is a Sasakian structure, then (x¢,*E,*n,*g) is also a
Sasakian structure, where we put

(3.12) *¢ = ¢, ¥ = a7'E, = am, xg = ag+ala—1)ngn

for a positive constant  ([10]). In this case it is said that M(¢,&,m, g)
is D-homothetic to M (x¢, ¥, #7, xg), then by using (3.11) and (3.12) we
have

(3.13)

*Pkj = OPrj,
*Ry = o 'Ry — 207 (o~ 1)8;’ + 2(n + L)oo — Dmet?,
*Sk; = Sk; — 2(a — 1) i,
*St = a 1S — 207 Ha — 1),
Taking account of (3.11), (3.12) and (3.13), we can easily verify that
*ijih = ijih,

where *xH ,Cjih denotes the horizontal lift of the traceless part of the

contact conformal curvature tensor field with respect to (x¢, &, 7, *g).
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THEOREM 3.1. ijih with respect to (¢,£,m,g) coincide with the
one with respect to *ijih with respect to (x¢, x&, %1, xg).

COROLLARY 3.2. A Sasakian manifold with vanishing a curvature-
like tensor H is D-homothetic to a Sasakian manifold with vanishing
tensor H.

THEOREM 3.3. A (2n + 1)-dimensional Sasakian manifold is of con-
stant ¢-holomorphic sectional curvature if and only if the manifold is
n-Einsteinian and H, h vanishes everywhere.

Proof. 1t is clear from (3.1) that Hy h = 0 implies

h
Ry

- %(52‘ Rj; — 6" Rii + Rpgji — R gki — Rim;mi + Ri'men;
~ k€™ Rj; + 1" Ry — ¢pSji + ¢ Ski — Siji + SV s
+ 26157 + 25k;67)
2
- {2;1(”1 1)2 + 45;(: i_)i) Hordsi — o dri — 20k;61)
+ 2n? —Tn —6 (2n? + 5n + 6)s
2n(n+1)(2n—-1)  4n?2(n+1)(2n —1)
L 10n* +19n+6 (20> +5n+6)s
2n(n+1)(2n-1) 4n?2(n+1)(2n—1
2(n—2)
n(2n —1)
+{8n3 +2n2+3n+6  (2n° +5n+6)s
n(n+1)(2n—-1) 4n2(n+1)(2n—1

}(orgsi — 67 grs)

)}(51’3773"'71' — 8P nens)

(67 Rjs — 6% Rys — Rjsmi€" + Ryin;€™)

)}(nk§h9j¢ — grin;€™).

If the manifold is n-Einstein, we have Rj; = (5; — 1)gjs + (2n + 1 ~
5= )07 and Sj; = (5 — 1)¢;i. Inserting those equations back into the
above equation, we obtain

1 1 _
Ry, = Z(k +3)(6rgsi — 60 gki) + Z(k — 1) (memi6) — mimidp

+ geim;€" — giinel™ + e dyi — B bk — 2001,
s;g:‘jl_)" This equation means that the manifold is of con-
stant ¢-holomorphic sectional curvature k. Conversely, if the manifold is

where k =
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of constant ¢-holomorphic sectional curvature, then Rj; = (5 —1)gsi +
(2n+1-5-)n;m; and consequently Sj; = (5= —1)¢;;. Substituting those
equations into (3.3), we can see that Hy h =0. a

We suppose that the curvature-like tensor H kji h coincides with the

contact conformal curvature tensor C, ; ?(for the definition of C, , ?, see
0,kji 0,kji
[4]). Then it follows that

S S
Rji = (5~ = 1)gji + 20+ 1~ o).

Conversely, if M?"*! is n-Einstein,

ho_ h_ R
Hy;i" = Cojs = Riji

1
= Z(k +3)(8kg5i — 67 gki)
1
+ Z(k — 1)(eni6} — nymidp + gramiE™ — gjimet”

+ Ppdji — O dri — 20k, 07).
Thus we have '

THEOREM 3.4. If H, ;" coincides with Co,ka‘h then M?"+! js p-
Einstein and vise versa.

On the other hand, J. C. Jeong, J. D. Lee, G. H. Oh and J. S. Pak
have obtained the following theorem.

THEOREM 3.5 ([4]). A necessary and sufficient condition in order
that Cy . j’; coincides with C-Bochner curvature tensor C;; h(for details
of Cy;; ™ see [6]) is that M?™*! is n-Einstein.

But if the tensor Hy, h with C-Bochner curvature tensor Chii h are
coincide, M is not n-Einstein. And finally we can say the following fact.

COROLLARY 3.6. If M?"*! is n-Einstein then Cy,, C

h
kjir “kji and

H, .." are coincides but the converse doesn’t hold.

kji
4. Spectrum of the Laplacian

Let M be a compact Sasakian manifold of real dimension m(= 2n+1)
and denote by A the Laplacian acting on p-forms on M, 0 < p < m.
Then we have the spectrum for each p:

Specp(M7 g) = {0 < /\O,p < )‘1,[) < )‘Z,p < T ‘+‘OO},
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where each eigenvalue )\, ), is repeated as many as times as its multi-

plicity indicates. Furthermore, the Minakshisundaram-Pleijel-Gaffney’s
formula for SpecP(M, g) is given by

oo
Ze:cp( Aapt) ~ (4t) 2 Zaap"‘ ast— 07,

where the constants A, , are spectral invariant. Especially, for p = 0,
we have

(4.1) o0 =/ dM =Vol(M,g),
M
(4.2) ajp = 1/ s dM,
6 Jm
(4.3) az0 = 360/ {2|R||? - 2||R1]]? + 5s*}dM,

where dM denotes the natural volume element of (M, g) ([1]). For p = 1,
we have

(4.4) ag =mVol(M,g),
(4.5) a1,1 :m——6 S dM,
&
@) a=gg [ {2m =13 - 2m - S0 Rs]

+ 5(m — 12)s*}dM
([11]). For p = 2, we have

m{m—1
(4.7) ap2 = %VOZ(M, 9),
2 _ 13m + 24
4.8) a1a=" 12m+ / s dM,
M
(4.9) a2 = 7 / {2(m? — 31m + 240)|| R

— 2(m? — 181m + 1080) || Ry ||
+ 5(m? — 25m + 120)s2}dM
(8, 12, 13)).

We next introduce the following lemma provided by Tanno ([11]) for
later use.
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LemMA 4.1 ([11]). Let (M,g) and (M’,g') be compact orientable
Riemannian manifolds with Vol(M,g) = Vol(M',¢’) and [,,s dM =
Jap 8 dM'. If s’ =constant, then [, s* dM > [,,, s'? dM’ with equality
if and only if s = constant = s’.

A straightforward computation by using (3.4), (3.9) and (4.3) yields

az,0 = L/ {IH|1? = bo(n)|QI* = co(n)s + do(n)}dM
(4.10) 180
' 60(7’1)
+ —3'6—(‘)—/82 dM,
where

2n3 + Tn? — 48n + 40

bo(n) = <0 forn=2

n?(2n — 1)
2(Tn + 3 2n(2n+ 1)}(5n +1
CO(n):—(;L———H—)’ do(n) = ( n—l—)(l );
5n% +4n +3
60(71)—*W>0,

Thus we have

THEOREM 4.2. Let M and M’ be compact Sasakian manifolds. As-
sume that Spec® M = Spec®M’. Then dimM = dimM’' = m(=2n+1),
and

(a) for m =5, M is of constant ¢-holomorphic sectional curvature if
and only if so is M', and s’ = constant = s;

(b) when M and M’ are n-Einstein and m > 5, M is of constant
¢-holomorphic sectional curvature if and only if so is M’', and s’ = s.

Proof. Our assumption Spec® M = Spec® M’ implies ag o = ag o and
a1,0 = aj o- Hence (4.1) and (4.2) yield

(4.11) Vol(M) = Vol(M"), / sdM = | s dM'.
M M

Moreover, since az,9 = a5 g, it follows from (4.10) that

(4.12)
[ 11 - wiyan + 24 [ a

= [ QP - @ Prav + 2 [ anr
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(a) For n = 2, if M’ is of constant holomorphic sectional curvature,
then H' = 0 and Q' = 0 and consequently (4.12) gives

[ 117 = sotmy@17an + D[ - [ am) =o

Since s’ = constant, Lemma 4.1 implies [s? dM > [ s’ dM’ and
consequently H = 0 and Q = 0. By means of Theorem 3.3 M is of
constant ¢-holomorphic sectional curvature.

(b) If @ = Q' =0, then s and s’ are both constants for n > 2. Thus
(4.11) gives s = &/, which together with (4.12) implies

[ s = [ yae an
M M’
Hence we have our assertions. O

We next consider the case of p = 1. In this case it follows from (3.4),
(3.9) and (4.6) that

(4.13)
021 = 155 | {20 = DB = QI - ex(m)s + dy(w)}ans

+ ei(n) /Ms dM

where
4Ant — 164n3 — 119n2 + 752n — 56
bi(n) = i 6dn 9n” + 762n 0<O for1<n<41;
n?(2n — 1)
2(10n2% + Tn + 61 2n(2n + 1)(10n? + 7n + 61
¢1(n) = ( )7 dy(n) = ( )( );
n+1 n+1
(n—3)(2n + 1)(5n — 11)
= f 3;
ei(n) Y >0 forn#3;

Thus we have

THEOREM 4.3. Let M and M’ be compact Sasakian manifolds. As-
sume that Spec' M = Spec'M’. Then dimM = dimM' = m(= 2n + 1),
and

(a) for 17 < m < 83, M is of constant ¢-holomorphic sectional cur-
vature if and only if so is M’', and s’ = constant = s;

(b) when M and M’ are n-Einstein, m > 15 and m # 15, M is of
constant ¢-holomorphic sectional curvature if and only if so is M’, and
s’ =s.
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Proof. Our assumption Spec' M = Spec' M’ implies ag = ap; and
a1,1 = ay ;. Hence (4.4) and (4.5) yield

(4.14) Vol(M) = Vol(M'), / sdM = s dM’.
M M

Moreover, since ag ; = a’2,1, it follows from (4.13) that

(4.15)
/ (2(n — T)|H|? - by(m)||Q|*}AM + 180e: (n) / 2 dM
M

= [ 2n =TI - @M +180e1(w) [ o anr'
M’ .

(a) For 8 < n < 41, if M’ is of constant ¢-holomorphic sectional
curvature, then H' = 0 and Q' = 0 and consequently (4.15) gives

/ {200 - DIH|? - bi(m)|QIP}dM
M

+ 18061(n)(/ s* dM—/s’2 dM’) = 0.

Since s’ = constant, Lemma 4.1 implies [s% dM > [ s'* dM’ and
consequently H = 0 and @ = 0. By means of Theorem 3.3 M is of
constant ¢-holomorphic sectional curvature.

(b) When Q = Q' =0 and n > 2, s and s’ are both constants. Thus
(4.14) gives s = s/, which together with (4.15) implies

/ |H|P? dM = / |H'2
M M’

provided n # 7. Hence we have our assertions. O

THEOREM 4.4. Let M and M’ be compact Sasakian manifolds. As-
sume that Spec®M = Spec® M’ and Spec' M = Spec'M’. Then dimM
=dimM' = m(=2n+ 1), and

(a) form = 5,7,9, M is of constant ¢-holomorphic sectional curvature
if and only if so is M/, and s’ = constant = s;

(b) for m > 5, M is n-Einstein if and only if so is M', and s' = s.
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Proof. Our assumption Spec® M = Spec® M’ implies ag o = a} o and
, 0,0
a1,0 = ay o- Hence (4.1) and (4.2) yield

(4.16) Vol(M) = Vol(M'), / sdM = s dM'.
M M

Moreover, the assumptions Spec® M = Spec® M’ and Spec M = Spect M’
give ag o = ay ¢ and az,1 = aj 1, from which together with (4.3) and (4.6),
we have

(4.17) /M(5||R||2 + 135?)dM = /M/ (5| R'||? + 135'%)dM’.

It follows from (3.9) and (4.17) that

(4.18)
AJWHW—MMWMMP—mKM&Hhmﬂ+mMm§MM

= [ ABIEI = boa(m)IQ'1? — con(m)s' + doa () + o (m)s" ),
MI

where

40(n — 1)(n — 5)

bo,1 = 2020 —1) <0 forn=23,4;
= 2Bt 202+ Bt
’ n+l1 > O n+1 ’
13n2 + 13n + 10
0.1 = n(n + 1) > 0.

(a) For n = 2,3,4, if M’ is of constant ¢-holomorphic sectional cur-
vature, then H' =0, ’ = 0 and (4.16) and consequently (4.18) gives

[ IHIP = boa(m) QUM + s () [ an - / §% dM") = 0.
M

Since s’ = constant, Lemma 4.1 implies [s? dM > [ s’® dM’ and
consequently H = 0 and Q = 0. By means of Theorem 3.3 M is of
constant ¢-holomorphic sectional curvature.
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(b) When Q@ = Q' =0 and n > 2, s and s’ are both constants. Thus
(4.16) gives s = s, which together with (4.18) implies

/MHHH2 dM:/M |H'||* dM’.

Hence we have our assertions. O

Finally we consider the case of p = 2. In this case it follows from
(3.4), (3.9) and (4.9) that

(4.19)
1
a2 = 735 [ {4(n=T)n = 1) HI = baQI — calm)s + dalr)
+ ez(n)s?}dM,
where
4(4n® — 344n* + 751n3 + 1862n2 — 6200n + 4200)
ba(n) = n?(2n —1) <0
for 2<n<83;
8(10n3 + 7n? + 301n — 240)
cz(n) = n+1
8n(2n + 1)(10n® + 7n? + 301n — 240)
da(n) = n+1
2(10n* — 107n® + 310n% — 147n — 30
ez(n) = (10n nnz;z3+ 17; r ) >0, forn>1 (n#5);

Thus we have

THEOREM 4.5. Let M and M’ be compact Sasakian manifolds. As-
sume that Spec’M = Spec?M’. Then dimM = dimM’ = m(=2n+ 1),
and

(a) for m = 15, M is of constant ¢-holomorphic sectional curvature
if and only if so is M', s’ = constant = s;

(b) when M and M’ are n-Einstein, m > 5 and m # 15, M is of
constant ¢-holomorphic sectional curvature if and only if so is M’, and
s =s.
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Proof. Our assumption Spec’M = Spec’M’ implies ao,2 = ag o and
a1,2 = ay 5. Hence (4.7) and (4.8) yield

(4.20) Vol(M) = Vol(M'), / sdM= [ s dM'
M M’

Moreover, since az,2 = a3 5, it follows from (4.19) that

(4.21)
/M4(n —7)(@n — 15)[H|? — ba(n) | QI + ea(n)s® dM

= | {4 =T)n = 15)|H'| = bo(n) | QI + ea(m)s”* dM'

(@) is trivial.
(b) When @ = Q' =0 and n > 2, s and s’ are both constants. Thus
(4.20) gives s = s/, which together with (4.21) implies

/ |H|? dM = / \E|? da,
M M

provided n # 7. Hence we have our assertions. a

In the above Theorem 4.5 (a), if m # 15 then J. S. Pak, J. C. Jeong
and W. -T. Kim have obtained the following result.

THEOREM 4.6 ([7]). Let M and M’ be compact Sasakian manifolds.
Assume that Spec?M = Spec?M’. Then dimM = dimM’' = m(=
2n 4+ 1). For m = 3,5,7,9,11 and 13, or 17 < m < 187, M is of
constant ¢-sectional curvature k if and only if M’ is of constant ¢-
sectional curvature k' = k.

THEOREM 4.7. Let M and M’ be compact Sasakian manifolds. As-
sume that Spec® M = Spec® M’ and Spec*M = Spec*?M’. Then dimM
=dimM' =m(=2n+ 1), and

(a) for m = 7,9, M is of constant ¢-holomorphic sectional curvature
if and only if so is M', s’ = constant = s.

(b) for m > 5, M is n-Einstein if and only if so is M’, s’ = s;
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Proof. Our assumption Spec®M = Spec® M’ yields ago = ag o and
a1,0 = aj o. Hence it follows from (4.1) and (4.2) that

(422)  Vol(M) = Vol(M'), / sdM = [ & am.
. M M
Moreover, the assumptions Spec® M = Spec® M’ and Spec?M = Spec> M’

give az o = aj o and ag 2 = aj 5, from which together with (4.3) and (4.6),
we have

(4.23) /M{(5m — 28)||RI|* 4+ (13m — 80)s?}dM
- / {(5m — W)|| R + (13m — 80)s'2}dM.
i

It follows from (3.4), (4.23) and m = 2n + 1 that

(4.24)
] 100n = ) = boa(mIQI* = coa()s +dos(n)
+ eg,2(n)s?}dM
= [ 1000~ 2)H'IP + boa(mIQ/ | = coz(m)s'+ doa(r)
+ e,2(n)s” }dM’,
where

8(n — 5)(n — 1)(10n — 23)

bo2(n) =. nZ(@n — 1) <0 forn=3, 4;
co2(n) = 4(3n + le)—(|_1§)n —23)

doan) = 21020+ 1)(3:b+ +11)(10n —23)

e02(n) = 26n3 — 12?:;21)147; — 46 50, for n>3;

(a) For n = 3,4, if M’ is of constant ¢-holomorphic sectional curva-
ture, then H' = 0 and Q' = 0 and consequently (4.24) gives

/M{<wn —93)|H? = bo2(n)|QI}dM
+ eO,Q(n)(/ s2 dM — /3’2 dM') = 0.
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Since s’ = constant, Lemma 4.1 implies [s* dM > [ s'? dM’ and
consequently H = 0 and @ = 0. By means of Theorem 3.3 M is of
constant ¢-holomorphic sectional curvature.

(b) When Q = @' =0 and n > 2, s and s’ are both constants. Thus
(4.22) gives s = ', which together with (4.24) implies

/ |H|? aM = / |E|? dM.
M M’

Hence we have our assertions O

THEOREM 4.8. Let M and M’ be compact Sasakian manifolds. As-
sume that Spec'! M = Spec' M’ and Spec?M = Spec?M’. Then dimM
= dimM' = m(= 2n + 1). Especially, for m > 5 and m # 15, M is
n-Einstein if and only if sois M', s’ = s ;

Proof. Our assumption Spec' M = Spec' M’ yields ag; = af, and
consequently it follows from (4.4) that Vol(M) = Vol(M’). Since
Spec*M = Spec?M’, ay 2 = 0y 5 yields [, s dM = [, s’ dM’. Sum-
ming up, we have

(4.25) Vol(M) = Vol(M'), / s dM = s' dM’.
M M

Moreover, the assumptions Spec! M = Spect M! and Spec?M = Spec? M’
give az1 = a5 and az 2 = aj ,, from which together with (4.6) and (4.9),
we have

(4.26)
/ {(5m* — 51m — 360)||R||> + (13m? — 147m + 360)s*}dM
M

= [ {(5m® — 51m — 360)||R'||*> + (13m? — 147m + 360)s'*}d M.
Ml

It follows from (3.9), (4.26) and m = 2n + 1 that
(4.27)

/M{2(" — 7)(10n + 29) | H[|* — b12(n)[|QI* — c1,2(n)s + d1,2(n)
+ e1,2(n)s*}dM
= M,{Q(n — T)(10n + 29) | H'||? — b1 2(n)| Q|1 — c1,2(n)s” + d1,2(n)

+ €1,2 (n)s'2}dM',



98

Young-Mi Kim

where
16(n —d5)(n — 1)(n — 7)(10n 4 29
b,2(n) = ( X n2(2)r(z—1))( ) <0 forn =26
8(3n 4+ 1)(n — 7)(10n + 29
c1,2(n) = ( )(n+ 1)( )
8n(2n + 1)(3n + 1)(n — 7)(10n + 29)
dr2(n) = n+1
4 —69n® — 109n® + 144n — 4
e12(n) = 2(26n” — 69n n(leo—fZ) + 144n — 406) >0, forn>4.

When Q@ =@ =0 and n > 2, s and s’ are both constants. Thus (4.25)
gives s = s/, which together with (4.27) implies

/ |H|? dM = / \H|? da,
M M’

provided n # 7. Hence we have our assertions. |
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