ON GENERALIZED (α, β) -DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

YONG-SOO JUNG AND KYOO-HONG PARK

ABSTRACT. Let R be a prime ring and I a nonzero ideal of R. Let $\alpha, \nu, \tau : R \to R$ be the endomorphisms and $\beta, \mu : R \to R$ the automorphisms. If R admits a generalized (α, β) -derivation g associated with a nonzero (α, β) -derivation δ such that $g([\mu(x), y]) = [\nu(x), y]_{\alpha, \tau}$ for all $x, y \in I$, then R is commutative.

1. Preliminaries

Throughout, R will represent an associative ring, and Z(R) will be its center. Let $x, y \in R$. The commutator xy - yx will be denoted by [x, y]. Let α and β be the endomorphisms of R. For any $x, y \in R$, we set $[x, y]_{\alpha,\beta} = x\alpha(y) - \beta(y)x$. We will also use the identities [xy, z] = [x, z]y + x[y, z], [x, yz] = [x, y]z + y[x, z] and $[x, yz]_{\alpha,\beta} = \beta(y)[x, z]_{\alpha,\beta} + [x, y]_{\alpha,\beta}\alpha(z)$.

Recall that R is prime if $xRy = \{0\}$ implies that either x = 0 or y = 0. An additive map $d: R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. For some fixed $a \in R$, the map $d_a: R \to R$ given by $d_a(x) = [a, x]$ for all $x \in R$ is a derivation which is said to be an inner derivation.

An additive map $f_{a,b}: R \to R$ is called a generalized inner derivation if $f_{a,b}(x) = ax + xb$ for some fixed $a, b \in R$. It is immediate to see that if $f_{a,b}$ is a generalized inner derivation, then we have, for all $x, y \in R$,

$$f_{a,b}(xy) = f_{a,b}(x)y + xd_{-b}(y),$$

where d_{-b} is an inner derivation. Following this observation and M. Brešar [2], an additive map $f: R \to R$ is called a generalized derivation associated with d if there exists a derivation $d: R \to R$ such that f(xy) = R

Received September 22, 2004. Revised November 17, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 16W20, 16W25, 16U80.

Key words and phrases: generalized (α, β) -derivations, prime ring, commutativity.

f(x)y+xd(y) for all $x,y \in R$. Other properties of generalized derivations were given by B. Hvala [4] and T. K. Lee [5], etc. Generally, we do not mention the derivation d associated with a generalized derivation f; rather we prefer to call f simply a generalized derivation. We can easily check that the notion of generalized derivation covers the notions of a derivation and a left multiplier (i.e., f(xy) = f(x)y for all $x, y \in R$).

Let α and β be the endomorphisms of R. An additive map $\delta: R \to R$ is called an (α, β) -derivation if $\delta(xy) = \delta(x)\alpha(y) + \beta(x)\delta(y)$ holds for all $x, y \in R$. An (1, 1)-derivation is called simply a derivation, where $1: R \to R$ is an identity map. For some fixed $a \in R$, the map $\delta_a: R \to R$ given by $\delta_a(x) = [a, x]_{\alpha,\beta}$ for all $x \in R$ is an (α, β) -derivation which will be said to be an (α, β) -inner derivation. An additive map $g_{a,b}: R \to R$ will be called a generalized (α, β) -inner derivation if $g_{a,b}(x) = a\alpha(x) + \beta(x)b$ for some fixed $a, b \in R$ and all $x \in R$. A simple computation yields that if $g_{a,b}$ is a generalized (α, β) -inner derivation, then we have, for all $x, y \in R$,

$$g_{a,b}(xy) = g_{a,b}(x)\alpha(y) + \beta(x)\delta_{-b}(y),$$

where δ_{-b} is an (α, β) -inner derivation. In this viewpoint, an additive map $g: R \to R$ will be called a generalized (α, β) -derivation associated with δ if there exists an (α, β) -derivation $\delta: R \to R$ such that

$$g(xy) = g(x)\alpha(y) + \beta(x)\delta(y)$$
 for all $x, y \in R$.

An (1,1)-generalized derivation is called simply a generalized derivation, where $1: R \to R$ is an identity map. As before, we will not mention the (α, β) -derivation δ associated with a generalized (α, β) -derivation g; rather we will prefer to call g simply a generalized (α, β) -derivation.

2. Main results

There exist various results concerning the relationship between the commutativity of a ring and the existence of certain specific types of derivation of R. For example, M. N. Daif and H. E. Bell [3] established that if in a semiprime ring R there exists a nonzero ideal I of R and a derivation d such that d([x,y]) = [x,y] for all $x,y \in I$, then $I \subseteq Z(R)$. Recently, M. A. Quadri et al. [7] proved that the Daif and Bell's result obtained by replacing a generalized derivation instead of the derivation in a prime ring, is still true. The purpose of this paper is to extend this result to a generalized (α, β) -derivation.

In this section, let α , ν and τ be endomorphisms of R and β , μ be automorphisms of R. We first need the next well-known lemma.

LEMMA 2.1 ([6]). Let R be a prime ring containing a nonzero commutative right ideal of R. Then R is commutative.

Our main theorem is as follows:

THEOREM 2.2. Let R be a prime ring and I a nonzero ideal of R. If R admits a generalized (α, β) -derivation g associated with a nonzero (α, β) -derivation δ such that $g([\mu(x), y]) = [\nu(x), y]_{\alpha, \tau}$ for all $x, y \in I$, then R is commutative.

Proof. We replace y by zy in the defining equation

(2.1)
$$g([\mu(x), y]) = [\nu(x), y]_{\alpha, \tau}$$

to obtain

$$g(z[\mu(x),y]+[\mu(x),z]y)=\tau(z)[\nu(x),y]_{\alpha,\tau}+[\nu(x),z]_{\alpha,\tau}\alpha(y)$$

for all $x, y, z \in I$ which implies that

(2.2)
$$g(z)\alpha([\mu(x), y]) + \beta(z)\delta([\mu(x), y]) + g([\mu(x), z])\alpha(y) + \beta([\mu(x), z])\delta(y)$$
$$= \tau(z)[\nu(x), y]_{\alpha, \tau} + [\nu(x), z]_{\alpha, \tau}\alpha(y) \text{ for all } x, y, z \in I.$$

By employing (2.1), we see that the relation (2.2) is reduced to

(2.3)
$$g(z)\alpha([\mu(x), y]) + \beta(z)\delta([\mu(x), y]) + \beta([\mu(x), z])\delta(y)$$
$$= \tau(z)[\nu(x), y]_{\alpha, \tau} \text{ for all } x, y, z \in I.$$

If we substitute $y\mu(x)$ for y in (2.3), then we get

$$\begin{split} g(z)\alpha([\mu(x),y])\alpha(\mu(x)) + \beta(z)\delta([\mu(x),y])\alpha(\mu(x)) \\ + \beta(z)\beta([\mu(x),y])\delta(\mu(x)) + \beta([\mu(x),z])\delta(y)\alpha(\mu(x)) \\ + \beta([\mu(x),z])\beta(y)\delta(\mu(x)) \\ = \tau(z)\tau(y)[\nu(x),\mu(x)]_{\alpha,\tau} + \tau(z)[\nu(x),y]_{\alpha,\tau}\alpha(\mu(x)) \\ = \tau(z)\tau(y)g([\mu(x),\mu(x)]) + \tau(z)[\nu(x),y]_{\alpha,\tau}\alpha(\mu(x)) \\ = \tau(z)[\nu(x),y]_{\alpha,\tau}\alpha(\mu(x)), \end{split}$$

that is,

$$(2.4) g(z)\alpha([\mu(x),y])\alpha(\mu(x)) + \beta(z)\delta([\mu(x),y])\alpha(\mu(x))$$

$$+\beta(z)\beta([\mu(x),y])\delta(\mu(x)) + \beta([\mu(x),z])\delta(y)\alpha(\mu(x))$$

$$+\beta([\mu(x),z])\beta(y)\delta(\mu(x))$$

$$= \tau(z)[\nu(x),y]_{\alpha,\tau}\alpha(\mu(x)) \text{for all } x,y,z \in I.$$

Right-multiplicating by $\alpha(\mu(x))$ in (2.3) and comparing (2.4) with the result, we obtain

$$\{\beta(z)\beta([\mu(x),y])+\beta([\mu(x),z])\beta(y)\}\delta(\mu(x))=0\ \ \text{for all}\ x,y,z\in I$$
 which is equivalent to

(2.5)
$$\{z[\mu(x), y] + [\mu(x), z]y\}\beta^{-1}(\delta(\mu(x))) = 0 \text{ for all } x, y, z \in I.$$

Replacing z by wz ($w \in R$) in (2.5) and using (2.5), we have

(2.6)
$$[\mu(x), w] z y \beta^{-1}(\delta(\mu(x))) = 0 \text{ for all } x, y, z \in I, \ w \in R.$$

Let $z = z\beta^{-1}(\delta(\mu(x)))$ and $y = y[\mu(x), w]z$ $(x, y, z \in I, w \in R)$ in (2.6). Then we obtain

$$[\mu(x), w]z\beta^{-1}(\delta(\mu(x)))y[\mu(x), w]z\beta^{-1}(\delta(\mu(x))) = 0$$

for all $x, y, z \in I$, $w \in R$ and the primeness of I yields

$$[\mu(x), w]z\beta^{-1}(\delta(\mu(x))) = 0$$

for all $x, z \in I$, $w \in R$.

For any fixed $w \in R$, again using the fact that I is prime, we have for all $x \in I$, either $[\mu(x), w] = 0$ or $\delta(\mu(x)) = 0$. This means that I is the union of its additive subgroups $A = \{x \in I : [\mu(x), w] = 0\}$ and $B = \{x \in I : \delta(\mu(x)) = 0\}$. Since a group cannot be the union of two proper subgroups and δ is nonzero, we get A = I, i.e., $[\mu(x), w] = 0$ for all $x \in I$.

Indeed, suppose that B = I, that is, $\delta(\mu(x)) = 0$ for all $x \in I$. Then we see that for all $x \in I$ and $y \in R$,

$$0 = \delta(\mu(xy)) = \delta(\mu(x)\mu(y))$$

$$= \delta(\mu(x))\alpha(\mu(y)) + \beta(\mu(x))\delta(\mu(y))$$

$$= \beta(\mu(x))\delta(\mu(y))$$

$$= (\beta \circ \mu)(x)\delta(\mu(y)),$$

from which we obtain $x(\beta \circ \mu)^{-1}(\delta(\mu(y))) = 0$ for all $x \in I$ and $y \in R$. Since I is prime, it follows that $(\beta \circ \mu)^{-1}(\delta(\mu(y))) = 0$ and hence $\delta(\mu(y)) = 0$ holds for all $y \in R$ which implies that $\delta = 0$. This contradicts that δ is nonzero.

Now $w \in R$ was arbitrary and so we see that $[\mu(x), w] = 0$ holds for all $x \in I$ and $w \in R$ which gives $\mu(I) \subseteq Z(R)$. Since $\mu(I)$ is a nonzero ideal of R, Lemma 2.1 guarantees that R is commutative. The proof of the theorem is completed.

COROLLARY 2.3 ([7, Theorem 2.1]). Let R be a prime ring and I a nonzero ideal of R. If R admits a generalized derivation g associated with a nonzero derivation δ such that g([x,y]) = [x,y] for all $x,y \in I$, then R is commutative.

Proof. Putting $\alpha = \beta = \mu = \nu = \tau = 1$ in Theorem 2.2 guarantees the conclusion of the corollary, where $1: R \to R$ is an identity map. \square

H. E. Bell and M. N. Daif [1] showed that if a 2-torsion-free prime ring R admits a nonzero derivation d satisfying d(xy) = d(yx) for all $x, y \in R$, then R is commutative.

Here we improve this result.

COROLLARY 2.4. Let R be a prime ring and I a nonzero ideal of R. If R admits a generalized (α, β) -derivation g associated with a nonzero (α, β) -derivation δ such that g(xy) = g(yx) for all $x, y \in I$, then R is commutative.

Proof. Setting $\mu = 1$ and $\nu = 0$, respectively, in Theorem 2.2, we obtain the result of the corollary, where $1: R \to R$ is an identity map and $0: R \to R$ is a zero map.

The following example shows that in the assumption of Corollary 2.4, if we replace the prime ring by a semiprime ring, then R may not be commutative.

EXAMPLE 2.5. Let R_1 be a noncommutative prime ring and R_2 a commutative prime ring. Then $R=R_1\oplus R_2$ is a semiprime ring. Suppose that α_2 and β_2 are two endomorphisms of R_2 with $\alpha_2 \neq \beta_2$. Then $\alpha_2 - \beta_2$ defines a nonzero (α_2, β_2) -derivation on R_2 . From this, it follows that a map $\delta: R \to R$ defined by $\delta(x_1, x_2) = (0, (\alpha_2 - \beta_2)(x_2))$ for all $(x_1, x_2) \in R$, is a nonzero (α, β) -derivation on R, where α is an endomorphism of R defined by $\alpha(x_1, x_2) = (0, \alpha_2(x_2))$ and β is an endomorphism of R given by $\beta(x_1, x_2) = (0, \beta_2(x_2))$.

Let us define a map $\gamma: R \to R$ by $\gamma(x_1, x_2) = (0, a\alpha_2(x_2)), a \in R_2$. Then it is easy to see that $g = \alpha - \beta + \gamma$ is a generalized (α, β) -derivation associated with a nonzero (α, β) -derivation δ such that g(xy) = g(yx) for all $x, y \in R$. However, R is not commutative.

References

[1] H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995), no. 4, 337-343.

- [2] M. Brešar, On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93.
- [3] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205–206.
- [4] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147–1166.
- [5] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057–4073.
- [6] J. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), no. 1, 122–126.
- [7] M. A. Quadri, M. Shadab Khan, and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34 (2003), no. 9, 1393– 1396.

YONG-SOO JUNG, DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, TAEJON 305-764, KOREA

E-mail: ysjung@math.cnu.ac.kr

KYOO-HONG PARK, DEPARTMENT OF MATHEMATICS EDUCATION, SEOWON UNIVERSITY, CHEONGJU, CHUNGBUK 361-742, KOREA

E-mail: parkkh@seowon.ac.kr