ON CONSTRUCTING REPRESENTATIONS OF THE SYMMETRIC GROUPS

VAHID DABBAGHIAN-ABDOLY

ABSTRACT. Let G be a symmetric group. In this paper we describe a method that for a certain irreducible character χ of G it finds a subgroup H such that the restriction of χ on H has a linear constituent with multiplicity one. Then using a well known algorithm we can construct a representation of G affording χ .

We recall some facts about characters of the symmetric group S_n . For a general reference see, for example, [3]. A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ of a natural number n is a weakly decreasing sequence $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_l > 0$ of integers with $|\lambda| = \sum_{i=1}^l \lambda_i = n$, for short we write $\lambda \vdash n$. The numbers λ_i are the parts of λ . We also write the partition exponentially as $\lambda = (l_1^{a_1}, \dots, l_m^{a_m}), l_1 > \dots > l_m > 0$, when we have a_i parts of size l_i .

Since the number of irreducible characters of a group is equal to the number of conjugacy classes, which in the case of S_n is the number of partitions of n, the irreducible characters of S_n are labelled by partitions of n. We denote the irreducible character labelled by the partition λ by $[\lambda]$, so $Irr(S_n) = \{[\lambda] \mid \lambda \vdash n\}$.

If G is a finite group and χ is an irreducible character of G, an efficient and simple method to construct representations of finite groups has been presented in [2]. This method is applicable whenever G has a subgroup H such that χ_H has a linear constituent with multiplicity 1. We call such a subgroup H a χ -subgroup. In practice this algorithm is quite fast when H has a small order, but can be very slow for a large H. For using this method to construct representations of G, we need to find a χ -subgroup for each irreducible character χ of G.

If G is a simple group or a covering group of a simple group, then a χ subgroup for each nontrivial irreducible character χ of G of degree < 32
has been found in [1]. Also if λ is a partition of n and λ' is the conjugate

Received October 14, 2004.

²⁰⁰⁰ Mathematics Subject Classification: Primary 20C30; Secondary 05E10, 03E02.

Key words and phrases: symmetric group, partition, irreducible representation.

partition of λ , it is a well known result that the Young subgroups S_{λ} and $S_{\lambda'}$ are $[\lambda]$ -subgroups (see [3, Theorem 2.1.3]). In this article we describe a method to find a $[\lambda]$ -subgroup for some certain irreducible characters $[\lambda]$ of S_n which is smaller than Young subgroups S_{λ} and $S_{\lambda'}$.

A Young diagram $Y(\lambda)$ corresponding to λ , is a collection of squares $(i,j) \in \mathbb{Z}^2$, such that $1 \leq j \leq \lambda_i$. Each $(i,j) \in Y(\lambda)$ is called a node of λ . A node (i,λ_i) is called removable (for λ) if $\lambda_i > \lambda_{i+1}$. A node (i,λ_i+1) is called addable if i=1 or i>1 and $\lambda_i < \lambda_{i-1}$. We denote by

$$\lambda_A = \lambda \setminus \{A\} = (\lambda_1, \dots, \lambda_{i-1}, \lambda_i - 1, \lambda_{i+1}, \dots, \lambda_l)$$

a partition of n-1 obtained by removing a removable node $A=(i,\lambda_i)$ from λ . Also

$$\lambda^{B} = \lambda \cup \{B\} = (\lambda_{1}, \dots, \lambda_{i-1}, \lambda_{i} + 1, \lambda_{i+1}, \dots, \lambda_{l})$$

is a partition of n+1 obtained by adding an addable node $B=(i,\lambda_{i+1})$ to λ .

The following theorem shows the behavior of irreducible characters of S_n when we restrict them to S_{n-1} . For proof see [3, p.59].

THEOREM 1 (Branching Theorem). If $\lambda \vdash n$, then

$$[\lambda]_{S_{n-1}} = \sum_{\substack{\text{removable nodes } A}} [\lambda \setminus \{A\}]$$

This theorem shows the constituents of $[\lambda]_{S_{n-1}}$ and using that recursively we can find all constituents of $[\lambda]_{S_{n-r}}$ for $r \ge 1$. The following theorem describes these constituents directly.

THEOREM 2. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l) \vdash n$ and $r \geqslant 1$. Then $[\mu] = [\mu_1, \mu_2, \dots, \mu_s]$ is a constituent of $[\lambda]_{S_{n-r}}$ if and only if μ is a partition of n-r and $\mu_i \leqslant \lambda_i$ for $i=1,\dots,s$.

Proof. If $[\mu] = [\mu_1, \mu_2, \dots, \mu_s]$ is a constituent of $[\lambda]_{S_{n-r}}$, then μ is a partition of n-r. The Branching Theorem implies $\mu_i \leq \lambda_i$ for $i=1,2,\ldots,s$.

Suppose $\mu = (\mu_1, \mu_2, \dots, \mu_s)$ is a partition of n - r and $\mu_i \leq \lambda_i$ for $i = 1, 2, \dots, s$, we show $[\mu]$ is a constituent of $[\lambda]_{S_{n-r}}$. We prove it by induction on r.

Let r=1. Then μ is a partition of n-1 and $\mu_i \leq \lambda_i$ implies that $\mu_i = \lambda_i - 1$ for some i and $\mu_j = \lambda_j$ for $j \neq i$. Thus according to the Branching Theorem $[\mu]$ is a constituent of $[\lambda]_{S_{n-1}}$.

Suppose the theorem is true for $r \ge 1$, and $[\mu] = [\mu_1, \mu_2, \dots, \mu_s]$ is a constituent of $[\lambda]_{S_{n-r}}$ for all partitions μ of n-r such that $\mu_i \le \lambda_i$

for $i=1,2,\ldots,s$. Let $\tau=[\tau_1,\tau_2,\ldots,\tau_p]$ be a partition of n-(r+1) and $\tau_i\leqslant \lambda_i$ for $i=1,2,\ldots,p$. Since n-(r+1)< n, if $\tau_{i-1}=\tau_i$ for all $i=2,\ldots,p$, then $\tau_1+1\leqslant \lambda_1$ and $\mu=(\tau_1+1,\tau_2,\ldots,\tau_p)$ is a partition of n-r which its parts are less than or equal corresponding parts of λ . Otherwise there exists i such that $\tau_{i-1}>\tau_i$ and $\tau_i+1\leqslant \lambda_i$. If we define $\mu=(\tau_1,\ldots,\tau_i+1,\ldots,\tau_p)$ then μ is a partition of n-r and its parts are less than or equal corresponding parts of λ . Hence using the assumption we have $[\mu]$ is a constituent of $[\lambda]_{S_{n-r}}$. Using the Branching Theorem $[\tau]$ is a constituent of $[\mu]_{S_{n-(r+1)}}$ so it is a constituent of $[\lambda]_{S_{n-(r+1)}}$. This proves the theorem.

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ then we denote $\hat{\lambda} = (\lambda_2, \dots, \lambda_l)$. We say the partition λ of n has level k if $\hat{\lambda} \vdash k$. Similarly we say the corresponding irreducible character $[\lambda]$ of S_n has level k. The principal character $\mathbf{1} = [n]$ is a character of level 0.

A Young graph \mathcal{Y} corresponding to λ , is a graph which the vertices are Young diagrams. Two diagrams λ and μ , are connected by an edge going from μ to λ , if $|\lambda| = |\mu| + 1$ and λ can be obtained by adding an addable node to μ .

THEOREM 3. Suppose $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l) \vdash n$ of level k and $r \geq 1$. If $[\mu]$ is a constituent of $[\lambda]_{S_{n-r}}$ of level t and $n-r-t \geq \lambda_2$, then

$$\langle [\lambda]_{S_{n-r}}, [\mu] \rangle = \binom{r}{k-t} \langle [\hat{\lambda}]_{S_t}, [\hat{\mu}] \rangle.$$

Proof. Using the Branching Theorem recursively, the multiplicity of $[\mu]$ in $[\lambda]_{S_{n-r}}$ equals to the number of possibilities to fill with nodes the rows of the Young diagram of μ to reach to the Young diagram of λ in the corresponding Young graph. Therefore to add nodes to go from $\mu = (n-r-t, \mu_2, \ldots, \mu_s)$ to λ , we have $\langle [\hat{\lambda}]_{S_t}, [\hat{\mu}] \rangle$ possibilities to fill rows 2 to l with k-t nodes (independent of what happens in the first row, by assumption that $n-r-t \geqslant \lambda_2$). In between these k-t additions in rows 2 to l, we add the r+t-k necessary nodes in the first row. Therefore the number of these possibilities to fill μ to reach λ is

$$\binom{(k-t)+(r+t-k)}{r+t-k}\langle [\hat{\lambda}]_{S_t}, [\hat{\mu}] \rangle = \binom{r}{k-t}\langle [\hat{\lambda}]_{S_t}, [\hat{\mu}] \rangle. \qquad \Box$$

COROLLARY 4. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l) \vdash n$ of level k.

(1) If $\lambda_1 - r \geqslant \lambda_2$ and $[\mu] = [\lambda_1 - r, \lambda_2, \dots, \lambda_l]$ then $\langle [\lambda]_{S_{n-r}}, [\mu] \rangle = 1$ and $[\mu]$ is the only constituent of $[\lambda]_{S_{n-r}}$ of level k.

(2) If $\lambda_1 - k \geqslant \lambda_2$ then $\langle [\lambda]_{S_{\lambda_2+k-1}}, [\mu] \rangle > 1$ for all constituents $[\mu]$ of $[\lambda]_{S_{\lambda_2+k-1}}$.

Proof. Since $[\mu]$ has level k so $[\hat{\lambda}]_{S_k} = [\hat{\mu}]$ and $\lambda_1 - r \geqslant \lambda_2$ implies $n - r - k \geqslant \lambda_2$. Using the Theorem 3 we obtain $\langle [\lambda]_{S_{n-r}}, [\mu] \rangle = 1$. By the Theorem 2, $[\mu]$ is the only constituent of $[\lambda]_{S_{n-r}}$ of level k and all the other constituents have level less than k.

If we consider $n-r=\lambda_2+k-1$ then $\lambda_1-k\geqslant \lambda_2$ implies r>k. We show $[\lambda]_{S_{\lambda_2+k-1}}$ has no constituent of level k. Indeed if $[\mu]$ is a constituent of level k then $\mu_i=\lambda_i$ for $i\geqslant 2$ and $\mu_1\geqslant \mu_2$ results $|\mu|\geqslant \lambda_2+k$ which is a contradiction with $\mu\vdash\lambda_2+k-1$. Since r>k and $[\lambda]_{S_{\lambda_2+k-1}}$ has no constituent of level k, the Theorem 3 proves (2).

If λ is a partition of n of level k then it is easy to see that $S_{\lambda'} \leqslant S_{\lambda_2+k}$. In addition if $\lambda_1 - k \geqslant \lambda_2$ then $S_{\lambda'}$ is smaller than S_{λ} and using the Corollary 4, S_{λ_2+k-1} does not contain any $[\lambda]$ -subgroup.

Suppose λ is a partition of n of level k such that $\lambda_1 - k \ge \lambda_2$. We describe a method to find a $[\lambda]$ -subgroup smaller than the Young subgroup $S_{\lambda'}$.

According to the Corollary 4, $[\lambda]_{S_{\lambda_2+k}}$ has a constituent of level k with multiplicity one. Suppose ρ^0 denotes this irreducible character of S_{λ_2+k} , which is corresponding to the partition $(\lambda_2, \lambda_2, \ldots, \lambda_l)$. Then $[\lambda]_{S_{\lambda_2+k}} = \rho^0 + \sum m_i \psi_i$ where ψ_i 's are irreducible characters of S_{λ_2+k} of levels less than k. Now we search among the subgroups of S_{λ_2+k} which are smaller than $S_{\lambda'}$ and are not subgroups of S_{λ_2+k-1} . If H is a subgroup of S_{λ_2+k} and φ is a linear character of H such that $\langle \rho_H^0, \varphi \rangle = 1$ and $\langle (\psi_i)_H, \varphi \rangle = 0$ for all i, then $\langle [\lambda]_H, \varphi \rangle = 1$ which it means H is a $[\lambda]$ -subgroup.

If such a subgroup does not exist in S_{λ_2+k} , then the procedure can be restarted with ρ^1 in place of ρ^0 , where ρ^1 is the constituent of level k with multiplicity one of $[\lambda]_{S_{\lambda_2+1+k}}$, corresponding to the partition $(\lambda_2+1,\lambda_2,\ldots,\lambda_l)$. That is, searching among the subgroups of S_{λ_2+1+k} which are smaller than $S_{\lambda'}$ and are not subgroups of S_{λ_2+k} . If H is a subgroup of S_{λ_2+1+k} and φ is a linear character of H such that $\langle \rho_H^1, \varphi \rangle = 1$ and φ is not a constituent of the restriction of the other constituents of $[\lambda]_{S_{\lambda_2+1+k}}$ on H, then $\langle [\lambda]_H, \varphi \rangle = 1$ which it implies H is a $[\lambda]$ -subgroup. If such a subgroup does not exist in S_{λ_2+1+k} the procedure continues.

Practically in most of the cases S_{λ_2+k} contains a $[\lambda]$ -subgroup smaller than $S_{\lambda'}$ and this method stops after the first pass.

For example if $[\lambda] = [8, 2, 1^4]$ is an irreducible character of S_{14} , then $|S_{\lambda'}| = 1440$. Using this method S_8 contains a $[\lambda]$ -subgroup H of order 240.

ACKNOWLEDGEMENT. This work was supported by the MITACS, NCE and NSERC of Canada.

References

- [1] V. Dabbaghian-Abdoly, Constructing representations of finite simple groups and covers, Canad. J. Math. 58 (2006), 23–38.
- [2] J. D. Dixon, Constructing representations of finite groups, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 11, Amer. Math. Soc., Providence, RI (1993), 105– 112
- [3] G. James and A. Kerber, *The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications 16, Addison-Wesley Publishing co., London, 1981.

CENTRE FOR EXPERIMENTAL AND CONSTRUCTIVE MATHEMATICS (CECM), SIMON FRASER UNIVERSITY, 8888 UNIVERSITY DRIVE, BURNABY BC, V5A 1S6 CANADA *E-mail*: vdabbagh@cecm.sfu.ca

: