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CONTROLLABILITY, OBSERVABILITY, AND
REALIZABILITY OF MATRIX LYAPUNOV SYSTEMS

M. S. N. Murty, B. V. Arra RAO, AND G. SURESH KUMAR

ABSTRACT. This paper presents necessary and sufficient conditions
for complete controllability, complete observability and realizability
associated with matrix Lyapunov systems under certain smoothness
conditions.

1. Introduction

The importance of control theory in applied mathematics and its oc-
currence in several problems such as mechanics, electromagnetic theory,
thermodynamics, artificial satellites etc., are well known. The main aim
being to compel or control a given system to behave in some desired
fashion. The main interest being to control the system automatically,
with out direct human intervention.

In this paper we focus our attention to the first order matrix Lya-
punov systems represented by

(1.1) XH=AWXHO+XHBE)+F@)U(®)

(1.2) Y (£) = C(t) X (t)

where X(t) is n x n matrix, U(¢) is m x n input matrix called control
and Y (t) is r X n out put matrix. Here A(t), B(t), F(t) and C(t) are
nxn,nxn,nxmandr x n matrices respectively and all of them are
assumed to be continuous functions of ¢.

Many authors [2, 3] obtained controllability and observability criteria
for similar systems of the type (1.1) and (1.2) with B(t) = 0.
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In Section 2 we study some basic properties of Kronecker product of
matrices and develop preliminary results by converting the given prob-
lem into a Kronecker product problem. The solution to the correspond-
ing initial value problem obtained in terms of transition matrices of the
systems X'(t) = A(t)X(t) and [X'(t)]* = B*(t)X*(t) by using the stan-
dard technique of variation of parameters [4].

Section 3 deals with providing necessary and sufficient conditions
for complete controllability and complete observability under certain
smoothness conditions.

In Section 4 we develop realizability criteria and minimal realizabil-
ity criteria, with zero initial state under more strengthened forms of
controllability and observability developed in Section 3.

2. Preliminaries

In this section we present some properties and rules for Kronecker
products and basic results related to matrix Lyapunov systems.

DEFINITION 2.1. [1] Let A € C™*™ and B € CP*? then the Kro-
necker product of A and B written A® B is defined to be the partitioned
matrix

all aiz .o . Qip

a a L0 . oa
A ® B = 21 22 2n

Aml Am2 . . . Qmp

is an mp x ng matrix and is in C™P>*™,

DEFINITION 2.2. [1] Let A = [a;;] € C™*™ we denote

Aq a1y

) Az azj

A=VecA=| . |,whered;=] . | (1< j< n).
A.n QAmyj

The Kronecker product has the following properties and rules [1]

(1) (A® B)* = A* @ B*(A* denotes the transpose of A)

(2) (A@B)'1=4"1@B!

(3) The mixed product rule (A®B)(C®D)=( AC®BD) this rule holds
good, provided the dimension of the matrices are such that the
various expressions exist.
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(4) If A(t) and B(t) are matrices, then
(A B =A'®@ B+ A® B'(' = d/dt)

(5) Vec (AYB) = (B* ® A)VecY

(6) If A and B are matrices both of order n x n then
(i) Vec(AX) = (I, ® A)VecX
(ii)) Vec(X A) = (A* ® I,)VecX.

Now by applying the Vec operator to the non-homogeneous controllable
time varying matrix Lyapunov system (1.1)and also the output equation
(1.2) and using the above properties we have

(2.1) P (t) = G(t)y(t) + (I ® F(t)U(t)

(22) Y(t) = (I, ® C(t))¥(t)
where 1(t) = VecX (t), G(t) = (B*® I,) + (I, ® A), U(t) = VecU(t) and
Y (t) = VecY (2).

Now we confine our attention to the corresponding homogeneous ma-
trix system of (2.1) given by

(2:3) P (t) = G()P(t)

LEMMA 2.1. Let ¢y and ¢o denote state transition matrices of the
systems X'(t) = A(t)X (t) and (X*(t)) = B*(t)X*(t) respectively. Then
the matrix ¢(t, s) defined by
(24) ¢(ta 8) = ¢2(t7 3) ® ¢1 (ta 3)

is the state transition matrix of (2.3) and every solution of (2.3) is of
the form 1(t) = ¢(t, s)C (where C is any constat vector of order n?).

Proof. Consider
¢'(t,5) = (¢ ® ¢1) + (42 ® 41)
= B*¢2 ® ¢1+ ¢2 ® Ay
= (B*"® In+ I, ® A)(¢2 ® 61)
Hence ¢' = G¢.
Also
¢(tat) = ¢2(t’t) ® ¢1(t’ t) =, Q1= n2-

Hence ¢ is the transition matrix of (2.3). Moreover it can be easily seen
that 9 is a solution of (2.3) and every solution of (2.3) is of this form. O
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THEOREM 2.1. Let ¢ = ¢2 ® ¢1 be a transition matrix of (2.3), then
the unique solution of (2.1), subject to the initial condition ¥ (tg) = o,
is

(25)  w(t) = olt,to)[o + / $(to, ) (In ® F(s))U(s)ds]

Proof. The proof is similar to the proof of Theorem 3.3 of [2]. O

3. Controllability and observability

In this section we obtain necessary and sufficient conditions for con-
trollability and observability of the systems (2.1) and (2.2). Unless oth-
erwise stated I stands for I,.

DEFINITION 3.1. A linear time varying system S; given by (2.1) and
(2.2) is said to be completely controllable (c.c.) if for ¢y, any initial state
¥(to) = 9o and any given final state ¢¢ there exists a finite time ¢; > tg

and a control U(t),t9 < t < t1, such that 9(t;) = V.

THEOREM 3.1. The system S) is c.c. if and only if the n? x n?
symmetric controllability matrix

(3.1) W (to, t1) = /cﬁ(to,S)(I@ F(s)){I ® F(s))"¢*(to, s)ds,
to

where ¢ is defined in (2.4), is nonsingular. In this case the control
(32)  Ut) = —(I©F(1))*¢" (to, )W (to, t1){wbo — $(to, t1)9}
defined on ty < t < t1, transfers ¥(tg) = o to Y (t1) = 5.

Proof. Suppose that W(tg, ¢1) is nonsingular, then the control defined
by (3.2) exists. Now substituting (3.2) in (2.5) with ¢t = ¢;, we have

P(t1)
[3]
= @(t1, to)[tho — /¢(to,$)(f® F(s))(I ® F(s))*¢*(to, s)W ™ (to, 1)

x {0 — B(to, 1)1y }ds]
= ¢’(t1; t0)¢(t07t1) = wf

Hence 57 is c.c.
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Conversely suppose that S is c.c., then we have to show that W (o, t1)
is nonsingular.
Since W is symmetric we can construct the quadratic form

[51
Wa= [0*(s,t0)0(s, to)ds
to

t1
(3.3) = f1lelds 2 0

to

where « is an arbitrary constant column n2-vector and (s, tp) = (I ®
F(s))*¢*(to, s)c. From (3.3), W (%o, t1) is positive semi definite. Suppose
there exists some (3 # 0 such that 3*W(tg,t1)3 = 0, then from equation
(3.3) with 6 = n when « = 3, implies

t1
/ lIn]|2ds = 0.
to

Using the properties of norms, we have
(3.4) (s, t0) =0, to<t<t.

Since S; is c.c. so there exists a control E(t) making (t;) = 0 if
¥ (to) = 5. Hence from (2.5) we have
t1
5= [ oo, 5)(T & F(s)E(5)is.
to

Consider

t1
1BI2 =66 = — / B (s)(I @ F(s)) " (to, 5)Bds
to

ty
=— /E’*(s)n(s, to)ds = 0.
to

Hence 8 = 0, which is a contradiction to our supposition, thus W(to, t1)
is positive definite and is therefore nonsingular. O

THEOREM 3.2. If, for a given ¢, there exists a constant column

2_vector 7y such that

n

(3.5) W (to, t1)y = o — d(to, t1)¥s
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then the control
U(t) = ~(I® F(t))¢"(to, )y
transfers the system (2.1) from ¥(ty) = 9o to ¥(t1) = ¢y.

Proof. Substituting given control U(t) into (2.5) with ¢ = #; gives

Y(t1) = ¢(t1, to) [llfo —/(15(750,3)(-7 ® F(s))(I ® F(s))*¢™(to, s)vds

= ¢(t1,t0)[to — W(to, t1)7]
= ¢(t1,t0)P(to, t1)y = y.

Hence we have our assertions. O
Define the transformation

(3.6) 2(t) = (I @ P(£))¥(t)

where P(t)(t > tg) is continuous nonsingular square matrix of order n.
The system Sy obtained from S; by using the above transformation is
said to be algebraically equivalent to S;.

THEOREM 3.3. If ¢(t,tp) is the state transition matrix for S1 then
(3.7) $(t,to) = (I ® P())¢(t, to) (1 ® P~ (to))
is the state transition matrix for Ss.

Proof. Given that ¢(t,tp) is the state transition matrix for S;. Then

d),(t, tO) = G(t)d)(t: tO): ¢(t07 tO) = In27

where G(t) = (B*(t) ® I) + (I ® A(t)).
Clearly ¢(to,to) = I,2. Differentiating (3.6) and using (2.1) gives

() = (TP ®)(t)+ (I ®PE)CE)() + (I F(t)U(t)
= [(I®P(t)+ (I® P(t)G(t)]¥(t)
+I @ P(t))(I ® F(t))U(t)
= [I®P(t))+ (I® P(t))G))I @ P(t)" 2(t)

(3.8) +(I @ P(t))(I @ F(t))U(t).

Now we show that @(t, o) is state transition matrix for (3.8).
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Consider
$'(t,t0) = (I ® P'(1))$(t, to)(I ® P~ (to))
+ (I P71 (t0))G(t)¢(t, to)(I ® P~ (t0))
= [I®P'(t)+ I @ PENGOII ® P(1))™
x (I® P(t))o(t, to)(I ® P~ (to))
= [(I® P'(t)) + (I ® P(t)G()]( @ P(t) " ¢(t, to).
Hence @(t,tg) is state transition matrix for Ss. O
THEOREM 3.4. If 57 is c.c. then so is Ss.
Proof. From (3.8) and (3.1) the controllability matrix for Sy is

(3.9)
W(to, tl)

= [(to, )1 ® PO © Fs)U © F)" (I Pe)F (t5)ds

= (I ® P(t0))W (to,t1)(I ® P(tp))"

Thus W (tg,t1) is nonsingular since the matrices W (t,t1), P(to) are
nonsingular and from Theorem 3.1 53 is c.c. O

DEFINITION 3.2. The system 57 is completely observable(c.o) if for
any time tg and any initial state ¥(ty) = o there exists a finite time
t1 > tp, such that the knowledge of U (t) and Y(t) for tg <t < t; suffices
to determine ¢y uniquely.

THEOREM 3.5. The system Sy is c.o. if and only if the symmetric
observability matrix

B10) Vo) = [ ¢(5,t0)(T & C9) (T Cs)ls,to)ds
to
is nonsingular.
Proof. Suppose that V(to,t;) is nonsingular. Assuming U(t) = 0,
to <t <t1, we have
Y(t) = (I @ C))(t).
Since from ¥(t) = ¢(t,19)o, we have

(3.11) Y(t) = (I ® C(1))#(t to)to.
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Multiplying (3.11) on the left by ¢*(¢,t0)(/®C(t))* and integrating from
tp to t1 we obtain

t1
/ 6*(5,t0)(I ® C(5))"V (s)ds = V (to, t1 )0,
to

t1
=5 o = V1 (to, 1) / 6*(s,10)(I ® C(s))" ¥ (s)ds.
to
Hence S, is c.o.
Conversely suppose that S; is c.o., then we prove that V(tp,t1) is
nonsingular. Since V (g, t1) is symmetric, we can construct the quadratic
form

Vo= / (I ® C(8)(s, to)al [T © C(5))(s, to)alds

to

(3.12)

t1
- / lIn(s, to)|12ds > 0,
to

where « is an arbitrary column n2-vector and (s, tp) = (I ® C(s))¢(s,
to)a. From (3.12) V(tg, t1) is positive semi definite. Suppose there exists
a (3 such that *V 3 = 0. From equation (3.12) with n = § when o = 3,
then implies

t1
/ 16(s, t0)][2ds = 0
to

= 0(s,t0) =0,t0 < s <ty

= (I®C(s))0(s,t0)B =0,tg < s < 1.
From (3.11), this implies that when g = 3, the out put is identically
zero throughout the interval, so that ¢ cannot be determined in this

case from a knowledge of ¥ (¢). This contradicts the supposition that S
is c.o. Hence V (%, t1) is positive definite, and therefore nonsingular. [

4. Realizability

In this section we discuss realizability and minimal realizability cri-
teria for the systems (2.1) and (2.2) with zero initial state.
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The output corresponding to zero initial state is given by

V(1) = e C) / 6(t, 5)(I ® F(s))U(s)ds

t
= / K(t,s)U(s)ds,
to

where ¢ is defined by (2.4). The matrix
(4.1) K(t,s) = (I ®C(t)é(t,s)(I® F(s))

is called the weighting pattern matrix.

For a given K(t,s) the realization problem is to find a {G(¢),(I ®
F(t)),(I ® C(t))} such that (4.1) is satisfied. The minimality of a real-
ization is G(t) has least possible dimension.

THEOREM 4.1. A realization exists for a matrix K(t,s) if and only
if it can be expressed in the form
(4.2) K(t,s) = L(t)M(s),
where L and M are matrices having finite dimensions.

Proof. Suppose K posses a realization, then (4.1) exists and
K(t,s) = (I ®C(t)o(t,s)(I® F(s))
= (I @ Ct){¢2(t, ) ® $1(t, s)}I ® F(s))
= (@ C(){Xa2(t) X5 () ® X1 ()X (s)}I © F(s))
= (I® C()(Xa2(t) ® X1(1))(X5 ' (s) ® X1 (s))(I ® F(s))
= L(t)M(s).
Where X; and X5 are fundamental matrices of X'(t) = A(t)X (¢) and
[X'(®)]* = B*(t) X*(t) respectively, L(t) = (I® C(t))(X2(t) ® X1(t)) and
M(s) = (X5 (s) ® X7(s))(I ® F(s)). So (4.2) is certainly a necessary
condition.
Conversely, if (4.2) holds K (¢,s) = L(t)M(s) = L(t)L,2 M (s) this im-
plies that ¢(t, s) = I,,2, then a realization of K (¢, s) is {0,2, M (t), L(t)},
where 0,,2 denotes an n? x n? zero matrix. O

THEOREM 4.2. A realization R = {G(t),(I ® F(t)),(I ® C(t))} of
K(t, s) is minimal if and only if it is c.c. and c.o.

Proof. Suppose that R = {G(t),(I ® F(t)),(I ® C(t))} is minimal.
We assume that the pair [G(t), (I ® F(t)))] is not c.c. and show that R is
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not minimal. A similar argument applies if [G(2), (I ® C(t))] is assumed
not c.o.

Now suppose that G(t) is n? x n? and that the controllability matrix
W (tg,t1) in (3.1) has rank p < n% From the proof of Theorem 3.1,
W (tg,t1) is positive semi definite, so there exists a nonsingular matrix
T such that

2

4.3) TWT* = [ Fa ] .

Consider the algebraic equivalence transformation (3.6) with I ® P(t) =
T(tp,t) . Then the corresponding realization under this transformation
R becomes

R ={0,,(I®Pt)(IeF(t),I®CH)I P ()}
From (3.9), the controllability matrix associated with R is

%% (I ® P(to))W (to,t1)(I @ P(tg))*
(4.4) = TWT*

and since ¢ = I,2 for R, we also have from (3.1)
t;
@s) W= / (1@ P(s))(I & F(s)(I ® F(s))"(I® P(s))"ds.
to

From (4.3), (4.4), and (4.5), it follows that
aeP@)Is FE) =] § |

where 3 has dimension p x mn. This implies that {0p, 5,~}, where 7 is
nr X p, is a realization of K, and this contradicts the minimality of R.
Conversely assume that R is c.c. and c.o. and show that there can
not exists a realization R; of K having order nq < n?.
Now assume, that such a realization exists and is of the form

Ry = {Om’ (I®F1(t))’ (I ® Cl(t))}

Now taking the transformation (3.6) with (I® P(t)) = (X2(t)® X1 (t)) ™
then R becomes R = {0,2,] ® F(t),I ® C(t)} and remains c.c. and c.o.
Since

K(t,s) = (I® CL()(I ® Fi(s)) =(I @ C(t))(I ® F(s)),
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multiplying the second and third term in the above equation on the left
and right by (I ® C(t))* and (I ® F(s))* respectively and integrating
with respect to t and s gives

(4.6) WiW, =VW,
where
Wy = / (1 C) (I ® Ci(t))dt, Wy = /(1 8 Fi(s))(I ® F(s))"ds

and V and W are the observability and controllability matrices for R. By
assumption ¥V and W have rank n?, so VW also has rank n?. However,
W, and Wy have dimensions n? x n; and n; x n? respectively, so that
rank(W;W2) < ny. From (4.6) we have n; > n?, and hence R is minimal.

O

THEOREM 4.3. If R = {G(t),I ® F(t),I ® C(t)} is a minimal real-
ization of K (t,s), then R = {G(t),I ® F(t),I ® C(t)} is also a minimal
realization if and only if

G(t) = [T ® P'(t))+(I ® P(t))G(t)](I ® P(t) ™,
F(t) = P(t)F(1),C(t) = C()P~(t),

where P(t) is continuous and nonsingular.

Proof. Proof follows along similar lines to that of Theorem 4.2. O
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