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NON-LINEAR DIFFERENTIAL
POLYNOMIALS SHARING 1-POINTS

INDRAJIT LAHIRI AND RUPA PAL

ABSTRACT. We prove two theorems on the uniqueness of nonlinear
differential polynomials sharing 1-points, the first of which improves
a recent result of Fang-Fang and Lin-Yi.

1. Introduction, definitions, and results

Let f and g be two nonconstant meromorphic functions defined in
the open complex plane C. Let k be a positive integer or infinity and
a € {00} UC. We denote by Ey(a; f) the set of all a-points of f with
multiplicities not exceeding k, where an a-point is counted according to
its multiplicity. If for some a € {00} UC, Eu)(a; f) = Ex)(a; g) we say
that f, g share the value a CM (counting multiplicities).

In [4] the problem of uniqueness of meromorphic functions when two
linear differential polynomials share the same 1-points was studied. Re-
garding the nonlinear differential polynomials the following question was
asked in [4] : What can be said if two nonlinear differential polynomials
generated by two meromorphic functions share 1 CM? Some works have
already been done in this direction [1, 2, 7, 8]. Recently Fang-Fang [2]
and Lin-Yi [8] proved the following result.

THEOREM A. [8] Let f and g be two nonconstant meromorphic func-
tions and n(> 13) be an integer. If f*(f — 1)2f' and g"(g — 1)?¢’ share
the value 1 CM, then f = g.

In the paper we also investigate the uniqueness problem of meromor-
phic functions when two nonlinear differential polynomials share the
value 1. We prove the following two theorems, the first of which im-
proves Theorem A.
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THEOREM 1.1. Let f and g be two nonconstant meromorphic func-
tions and n(> 13) be an integer. If E3)(1; f*(f —1)*f') = E3)(1;9™(9 —
1)2¢’) then f = g. :

THEOREM 1.2. Let f and g be two nonconstant meromorphic func-
tions and n(> 14) be an integer. If E5y(1; f*(f3—1)f") = E3)(1; g™(¢* -
1)¢') then f = g.

Though for the standard notations and definitions of value distribu-
tion theory we refer [3], in the following definition we explain a notation
used in the paper.

DEFINITION 1.1. Let f be a meromorphic function and a € CU{oo}.
For a positive integer p we denote by Np(r,a; f) the counting function
of a-points of f, where an a-point of multiplicity m is counted m times
if m < p and is counted p times if m > p.

2. Lemmas

In this section we present some lemmas which will be needed in the
sequel.

LEMMA 2.1. Let f and g be two nonconstant meromorphic functions.
Then f*(f —1)2f'g"(g — 1)%¢’ # 1, where n(> 7) is an integer.

Proof. 1f possible let f*(f—1)2f'g"(g—1)%¢’ = 1. Let 2o be an 1-point
of f with multiplicity p(> 1). Then z is a pole of g with multiplicity
q(> 1) such that 3p— 1= (n+2)g+¢-+1>n+4 and so p > &5

Let z1 be a zero of f with multiplicity p(> 1) and it be a pole of g with
multiplicity g¢(> 1). Then np+p—~1= (n+3)g+1ie,2¢=(n+1)(p—
g9)—-2>n—-1ie,q> "T‘l So(n+1l)p=(n+3)g+2> ("—+3)2£n;1)+2
and so p > "-2—"'1
Since a pole of f is either a zero of g(g — 1) or a zero of ¢’, we get

N(r,00; f) < N(r,0;9) + N(r,1;9) + No(r,0; g)

2 3 —
< ———N(r,0 ——N(r,1; No(r,0; 4
< N0 + —=N(r, 1ig) + No(r,0;)

2 3 —
< )T No(r,0; ¢’
> (n+1+n+5> (T,g)+ 0(7‘,0,9),

where No(r,0;g’) is the reduced counting function of those zeros of ¢’
which are not the zeros of g(g — 1).




Non-linear differential polynomials 163

By the second fundamental theorem we obtain

T(r, f)
N(r,0; f) + N(r,00; f) + N(r, 1; f) = No(r, 0; f') + S(r, f)

2 3 2 3
—Z _N(r0; f) + —>—N(r,1; =
s RGUE Ry (r’l’f)+<n+1+n+5)T(r’g)

+No(r,0;¢') — No(r,0; f') + S(r, f)

IA

IA

(1— 2__ 3 )T(r,f)

n+1 n+5

= (nil + ni5> T(r,g) + No(r,0; ") — No(r,0; f) + S(r, f).

Similarly we get
(2.2)
2 3
1-— - T
< n+l n+ 5) (r,9)

2 ST —
: <n+ 1" T’Li—i-f)) T(r, £) + No(r, 0; f') = No(r, 0;¢') + S(r, 9)-

Adding (2.1) and (2.2) we get

(1= 2~ =55 TN+ 760 < 56,1 +5(r,9),

which is a contradiction. This proves the lemma. O
LEMMA 2.2. [9] Let f be a nonconstant meromorphic function and

P(f)= ap+ayf+asf?+---+anf", where ag,a1,as, ..., a, aré constants
and a, # 0. Then

T(r, P(f)) = nT(r, f) + S(r, f).

2 2 2
LemMa 2.3. Let F = fo+ (5 — 25 4+ 1) and G = g™+ (G5 -

7;2122' + nL_H), where n(> 5) is an integer. Then F' = G’ implies F = G.
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Proof. Let I/ = G'. Then F = G + ¢, where ¢ is a constant. If
possible, let ¢ # 0. Then by the second fundamental theorem we get

T(r, F) N(r,0; F) + N(r,c; F) + N(r,00; F) + S(r, F)

N(r,0; f) +20(r, f) + N(r,00; f) + N(r,0;G) + S(r, F)
AT (r, f) + N(r,0;9) + 2T(r, g) + S(r, F)

AT (r, f) + 3T(r,g) + S(r, F).

Since by Lemma 2.2 T(r, F) = (n + 3)T(r, f) + S(r, f), it follows that

(A

IANIN DA

(2.3) (n+3)T(r, f) < AT (r, )+ 3T(r,g) + S(r, f).
Similarly we get
(2.4) (n+3)T(r,g) < 3T(r,f) +4T(r,9) + S(r, g).

Adding (2.3) and (2.4) we obtain
(n—4{T(r,f) +T(r.g)} < S(r, f) + S(r,9),
which is a contradiction. So ¢ = 0 and the lemma is proved. a
LEMMA 2.4. Let F and G be given as in Lemma 2.3. Then F = G
implies f = g.
The proof of the lemma can be found in [§].

LEMMA 2.5. [6] If f, g are nonconstant meromorphic functions and
E3y(1; f) = E3)(1; g) then one of the following cases holds :
(1) T(Ta f) + T(Tv g) < 2{N2(T7 Oa f) + NZ(Tv Oa g) + NQ(Ta 03 f)
+ Na(r,00;9)} + S(r, f) + S(r, 9);
(i) f=g;
(ili) fg=1.
LEMMA 2.6. [5] Let f be a nonconstant meromorphic function and k
be a positive integer. Then

No(r,0; f®) < kN (r, 00; f) + Noak(r, 0; f) + S(r, ).
LeMMA 2.7. Let F and G be given as in Lemma 2.3 and a = %i—g +
i/253 - L;. Then
Q) T(r,F) < T(r,F') + N(r,0; f) + N(r,a; f) + N(r,a; f)
—2N(r,1; f) = N(r,0; f') + S(r, f);
(i) T(r,G) < T(r,G') + N(r,0;9) + N(r,a;g) + N(r,@; g)
—2N(r,1;9) — N(r,0;9) + S(r, g);
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Proof. We prove (i) because (ii) is similar. By the first fundamental
theorem and Lemma 2.2 we get

T(r,F) = T(r,1/F)+0(1)
= N(r,0;F)+m(r,1/F)+ O(1)

N(r,0; F) + m(r, F'/F) + m(r,0; F') + O(1)
T(r,F'y+ N(r,0; F) — N(r,0; F') + S(r, F)
T(r,F') + (n+ 1)N(r,0; f) + N(r,a; f) + N(r,a; f)
—nN(r,0; f) = 2N(r, 1; f) — N(r,0; f') + S(r, f)
= T(r, F') + N(r,0; f) + N(r,a; f) + N(r, & f)

—2N(r,1; f) — N(r,0; f') + S(, f).

This proves the lemma. O

IA

LEMMA 2.8. Let f and g be two nonconstant meromorphic functions.
Then f*(f3 —1)f'g™(¢3 — 1)g' # 1, where n is a positive integer.

Proof. If possible let f™(f3 —1)f'¢g"(¢> — 1)g = 1. Let 29 be a 1-
point of f with multiplicity p. Then zj is a pole of g with multiplicity
g, say, such that 2p — 1 = (n+4)g+1>n+5ie,p > "T‘Hj. Hence
o(1;f) > 1- ni%‘ Similarly we can show that O(w; f) > 1 — n—ig
and O(w?; f) > 1 where w is the imaginary cube root of unity.

Therefore

_ 2
n+6’

O(1i ) +O(wif) + 8w /) 23~ = > 2,

a contradiction. This proves the lemma. O
LEMMA 2.9. Let F, = fr+! (gﬁ - #1) and G; = g™+ (gm _ ;L.1+_1)

where n(> 2) is an integer. If F1 = G then f = g.

Proof. Let h = g/f. If possible, suppose that h is nonconstant. Since
Fy = G4, it follows that
= n+4 Rl —1.
n+1 hrtt—1
Since f3 has no simple pole, it follows that A —uj = 0 has no simple root
for k =1,2,...,n+ 3, where ux = exp (%7%{4“) Hence ©(ug; h) > 1/2
for k=1,2,...,n+4+ 3, which is impossible. Therefore h is a constant. If
h # 1, it follows that f is a constant, which is not the case. So h =1
and hence f = ¢g. This proves the lemma. O

LEMMA 2.10. Let Iy and G be defined as in Lemma 2.9. Then
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() TG, ) < TG, F) + N0 ) + N 235 £9) = N L )
— N(r,0; f') + S(r, f),
n+4

(1) T(r,Gr) < T(r,G) + N(r,0:9) + N (r,
- N(Ta 0’ g,) + S(T‘, g)

3 3
. _N 1.
+1,g) (r,1;6%)

The lemma can be proved in the line of the proof of Lemma 2.7.

LEMMA 2.11. Let Fy and Gy be defined as in Lemma 2.9, where
n(> 5) is an integer. Then F| = G implies F = G;.

The proof is similar to that of Lemma 2.3.

3. Proofs of the Theorems

In this section we present the proofs of the main results.

Proof of Theorem 1.1. Let F and G be defined as in Lemma 2.3. If
possible, suppose that
T(Ir7 FI) + T(Ta G,) < 2{N2(ra 07 F,) + N2(r7 0, G,) + N2(7'7 05 F,)
+Na(r,00; G} + S(r, F') + S(r,G").

Then by Lemmas 2.2, 2.6 and 2.7 we get

T(r,F)+T(r,G)
< T(r,F')+ N(r,0; f) + N(r,a; f) + N(r,a; f) — 2N(r, 1; f)
—~N(r,0; f)+T(r,G') + N(r,0;g) + N(r,a;g9) + N(r,a; g)
—2N(r,1;9) = N(r,0,¢") + S(r, f) + S(r, 9)
2 {Na(r,0; F') + N (r,0; G') + Na(r, 00; F') + Na(r,00; G') }
+N(r,0; f) + N(r,a; f) + N(r,@; f) ~ 2N(r, 1; f) = N(r,0; f)
+N(r,0;9) + N(r,a; 9) + N(r,a; 9) — 2N(r,1;9) ~ N(r,0; ¢')
+S(r, f) + S(r,9)
AN(r,0; f) + 2N(r,0; (f — 1)) + 2Ny (r, 0; f') + 4N (r,0; g)
+2N(r,0; (g — 1)%) + 2N, (r,0; ¢') + 4N (r, 00; f) + 4N(r, 00; g)
+N(r,0; f) + N(r,a; f) + N(r,@; f) — 2N(r, 1; f) = N(r,0; f)
+N(r,0;9) + N(r,a;9) + N(r,a,9) — 2N(r,1;9) = N(r,0;4)
+8(r, f)+ S(r,9)

IN

IA
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< 11T(r, f) +2N(r,1; f) + T(r, f') + 11T(r, g) + 2N (r, 1;9)
+T(r,g") + S(r, f) + S(r,9)
< 15T(r, f) + 15T (r,g) + S(r, f) + S(7, 9)-
So by Lemma 2.2 we get

(n=12){T(r, f) + T(r,9)} < S(r, f) + S(r, 9),

which is a contradiction.

Hence by Lemma 2.5 either F' = G’ or F'G’ = 1. Since by Lemma
2.1 F'G" £ 1, it follows by Lemma 2.3 and Lemma 2.4 f = g. This
proves the theorem. O

Proof of Theorem 1.2. Let F} and G4 be defined as in Lemma, 2.9. If
possible suppose that
T(r,F})+T(r,G})
< 2{Na(r,0; F) + Na(r, 0; G}) + Na(r, 00; F) + Na(r, 00;G) }
+8(r, F}) + S(r, G}).
Then by Lemmas 2.2, 2.6 and 2.10 we get
T(r,F1)+T(r,G1)
< 2{Na(r,0; FY) + Na(r,0; G}) + Na(r, 00; F) + Na(r,00; G1) }

4
Zil;f?’)—N(T,O;f’)—N(T,l;f3)

DL 6~ N 156%) — NG, 03') + 501,)

+N(r,0; f) + N(r,

+N(r,0;9) + N(r,

+S(r, 9)

AN (r,0; f) + 2Na(r, 1; £2) 4+ 2Na(r, 0; f') + AN (r,0; g)

+2N3(r, 15, %) + 2N3(r, 0; g') + AN (r, 00; f) + 4N (r, 00; g)
n-+4

+N(r,0; ) + N(r, ———5 %) = N(r, 1; £°) = N(r,0; f')

N 0,9) + N(r, 233 6%) = N1, 136%) = N(r,0;6)
+S(r, f)+ S(r,9)
< 17T(r, f) + 17T (r, g) + S(r, f) + S(r, 9)
and so by Lemma 2.2 we get
(n—13){T(r, f) + T(r,9)} < S(r, f) + S(r,9),

which is a contradiction.

IA
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Hence by Lemma 2.5 either F] = G} or F{G} = 1. Since by Lemma
2.8 F{G} # 1, it follows by Lemmas 2.9 and 2.11 that f = g. This
proves the theorem. O
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