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SPHERICAL FUNCTIONS ON
PROJECTIVE CLASS ALGEBRAS

EunM1 CHOl

ABSTRACT. Let F*G be a twisted group algebra with basis {u4|g €
G} and P = {C4lg € G} be a partition of G. A projective class
algebra associated with P is a subalgebra of F*G generated by
all class sums Zzecg uz. A main object of the paper is to find
interrelationships of projective class algebras in F*G and in F*H
for H < . And the a-spherical function will play an important
role for the purpose. We find functional properties of a-spherical
functions and investigate roles of a-spherical functions as characters
of projective class algebras.

1. Introduction

Let G be a finite group and F* be the multiplicative group of a field
F with trivial G-action. For a 2-cocycle a in Z2(G, F*), let F®G be a
twisted group algebra with F-basis {u4lg € G}, u3 = 1 = 1pag such
that ugue = a(g, T)uge for all g,z € G.

Let P = {Cq4|g € G} be a partition of G consisting of classes Cy4 of G
containing g and let c;‘ = ercg ug be the class sum of Cy. A subalgebra
A of F*G generated by all class sums ¢ (g in distinct class Cy) is called
a projective class algebra in F®G associated with P. Moreover if P
satisfies conditions that C; = {1} and C;* = Cy—1 for all g € G and if
A has a unit element 1 then A is called a projective Schur algebra over
G in F*G. If « = 1 then A is a Schur algebra over G in group algebra
FQ@G, and we may refer to [1], [3], [9], and [21] for this topic.

In 1933, I. Schur introduced a special class of subalgebras of finite
group algebra ([16]). The theory of these algebras, which were named
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Schur rings, was developed by Wielandt [20] in order to study permu-
tation groups. During last 20 years, there have been important devel-
opments of Schur ring theory to algebraic combinatorics [2], indeed the
Schur ring over cyclic groups was closely related to the isomorphism
problem in cyclic graphs theory (see from [11] to [14]).

Let H be a subgroup of G. Let A be a projective Schur algebra over
G in F*G associated with P, and A’ be a projective Schur algebra over
H in F*H associated with partition P’. For each C' € P/, if ' = UC
for some C € P then A’ is called a projective Schur subalgebra of A.
The centralizer algebra Cpeg(F*H) and F*G itself are projective Schur
algebras in F'*G. And the center algebra Z(F*H) is a projective Schur
subalgebra of both Crag(F*H) and F*G. The algebra Cpg(FH) as
an example of Schur algebra, and the representations and characters of
the algebra have been studied in [18] and {20].

The purpose of the work is to study connections of projective Schur
algebras in F'*G and in F*H. For this aim, a (projective) a-spherical
function of G associated with H will play a central role. When a = 1,
the spherical function was discussed in [5] and [19] as a character of the
Schur algebra Crg(FH) in FG. Although projective Schur rings share
many common properties with Schur rings, projective Schur rings are
more complicate since they need 2-cocycle. In section 3, we develop a-
spherical functions in accordance with group characters, and show that
they are H-class functions. In section 4, we study functional properties
of a-characters and a-spherical functions. We then investigate how a-
spherical functions on G work over the center algebra as well as over the
centralizer algebra in F*G in section 5. We determine characters and
modules of some projective Schur algebras.

Throughout the paper, let G be a finite group and o be a 2-cocycle
in Z*(G, F*) having trivial action over a field F' of characteristic 0. Let
F®G be the twisted group algebra with basis {uglg € G}, u1 = 1pag,
satisfying ugu, = a(g, T)ug: for g,z € G. For H < G, we use the same
symbol for o € Z2(G, F*) and its restriction to Z2(H, F*), hence F*H
can be regarded as a subalgebra of FF*G consisting of linear combinations
of {up|h € H}. For an algebra A and a subalgebra B of A, we denote
by Z(A) the center of A and by C4(B) the centralizer of B in A.

2. Preliminaries

Let H < G. We say g,z € G are H-conjugate if ¢ = 2P = hzh™?
for some h € H. The H-conjugacy is an equivalence relation and G is
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a union of H-(conjugacy) classes. g € G is said to be a-H-regular if
a(g,h) = a(h,g) for all h € H with gh = hg. If g is a-H-regular then
so is any H-conjugate of g. An H-conjugacy class of G is a-H-regular
class if it contains at least one a-H-regular element (see {10, v.2, p.182]).
In particular if G = H then H-conjugate and a-H-regular are nothing
but conjugate and a-regular respectively. A 2-cocycle a € Z%(G, F*) is
called normal if a(z,g) = a(¢*,z) for any a-regular g € G and any
z €G.

LEMMA 1. [10, vol. 3, (1.6.2)] Let 8 be an a-character of G and g, €
G.

() 0(g) = a(z,g)at(g% x)0(g%). If g is not a-regular then 6(g) = 0.
(ii) If « is normal then 0 is a class function, i.e., (g) = 6(¢”). The
converse holds when F is a splitting field for F®G.

While an ordinary character is always a class function, projective o-
character is a class function when « is normal. However since any cocycle
is cohomologous to a normal cocycle over arbitrary field F' ({10, vol. 3,
(1.6.1)]), a-character can be regarded as a class function. Furthermore,
a-characters are entirely determined by restrictions to the set of all a-
regular elements Gy because they vanish outside Gy.

Let \; be any function on G. The a-inner product ( , ), is defined
by

(1) (At A2), g = Za “HAr(z) Ao (z7Y)

|G| zeG
([10, vol. 3, (1.11.8), p.69]). Hence for any g € Gp and for Kronecker
delta d;;, the orthogonality relation of x; and x; € Irr(G) follows that

a oz (zg)x;(x™Y) = 6 X_’(g_)
2) ; Ja(@ ghxalaglxi(e™) = 8 L -

If x € Irro(G) then restriction x|z to H is a sum of irreducible a-
characters of H, say x|g = D Cy4,¢: for ¢; € Irrg(H) and cyg, > 0.
The ¢y, is the multiplicity of ¢; in x|u, and is equal to (x|, #i)a,c- In
particular if ¢ € Irry(H) is contained in x|g (denote ¢ C x|g), we write
Xlg = cxod + Z¢¢¢ielrra(H) Cxps Pi-

Let x € Irro(G) and ¢ € Irro (H) with ¢ C x|g. Amap Yy : G — F*
defined by

(3) Yeol9) = |H| > o (hha(h, 9)x(hg)$(h )
heH
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is called a (projective) a-spherical function attached to x and ¢. If
a = 1, the (ordinary) spherical function Y, 4 has analogous properties of
group characters ([5], [19]). The classical theory of spherical functions is
a well developed part of harmonic analysis that studies the functions on
a real reductive Lie group. Group theoretical spherical functions were
discussed in [6] and [7].

3. Projective spherical functions

We begin with easy calculations of 2-cocycles for next use.

LEMMA 2. (i) afzz, z'_ly) = O‘_l(m,z)a_l(z_l,y)a(z,z_l)a(x,y) for
z,y,2 € G.

(ii) In particular, a(zz,y2~!) = a1 (2, 2)a "y, 27 Ha(z, 2~ Ha(z, y),
if z,y are a-regular in group Gy and « is normal. Moreover a(x?,y*) =
o(z,y).

Proof. Since u,—1 = a(z,z~u;!, it is obvious that

1

lyy = UgzUg=1yUy 1, = oYz, 2)a (27 y)a(z, 2 Ha(z, y).

a(zz, 2~

Let o be normal and x,y be a-regular elements in group Go. Then
a(z,z) = a(z?, z) and uuzu; ! = uy: for any 2z € G. Thus

—1y _ -1
a(zz,yz ) = Usg Uy, =10, s

=a! (z, x)a'l (y, z_l)uzumuyuz_1 (uzumyu;l)_1

=a (2, 2)a” (y, 27 Dalz, 27 )a(z,y).
Moreover,
a(z®,y*) = Umzuyzu(_x:;)z = U Upuyu; (Usuguy D)7 = a(z, y).
O

Let us define a convolution %, (with respect to «) of functions A; on
G by

A1 *q A2(g) = —'él a—l(%x 1)a(x—1,g)/\1(y)/\2(m)
zy=g
- |C1;| Za 1(33ax_l)a(ﬂv_l,g)/\l(w_lg))\z(x) for g€ G.
zeG

LEMMA 3. The convolution *., satisfies the associative law.
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Proof. For any functions \; (i =1,...,3) of G and g € G, we have
A1 *a (/\2 *q /\3)(9)

Z oz‘l(z z 1)oz ,g)kl(z_lg)(AZ *q 03)(2)

zEG
Z (2,2 Dzt g9) o7y, y Dy, 2)
2,y€G
Az ))\2( 12 Aa(y)
Z ) He((yz) ™ g)a y, v Daly ™, yz)
z,y€G

- Mzl A2 (2) A3 (w) (by substituting vy 'z = x).
Easy computations in Lemma 2 (i) give rise to the next relations that
a((yz) ™ 9) = alz™hy  g)aly ™ ga ey Y,

oy yz) =aly L y)a T (¥, 1),
and

oMy, (y2) ™) = oy, e e, e aly, 2)a(z Ty Y.

Therefore, the associative law follows immediately from the calcula-
tion that

)\1 *o (>\2 *q )\3)( )

Z My, y e @z alz Ty g)aly ™ g)

z,yeG
Azt ) A2 (z) sy )

Za Yy, y Naly™, 9) = IG} Y aMzz Ha(z™y )

yeG zeG

~>\1(m_ ¥ 9)he(7) A3 (y)
Z a My, y Dy ) (M *a A2) (¥ 9)As(y)
yeG

= (>‘1 *o )\2) *o >\3(g)-
O

If no confusion can occur, notation * will be used for *,. We show

that the a-spherical function Y, is a convolution product of x € Irr,(G)
and ¢ € Irr (H).
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THEOREM 4. (i) If H =1 or H = G then all Y, are a-characters
of G.
(i) For any functions A\; on G, A1 * A2(1) = (A1, A2)e,g- And

1
Yix =x*x= X~(1_)X’ and Y,4(1) = (x|H, d)a,H = Cxg-

(ili) Yy = x * é, where ¢(z) = lﬁlqu(x) if x € H and 0 otherwise.

Proof. (i) It G = H, then Yy4(9) = 157 Loec@ (2,27 )a(z,9)
(:cg)x( ~1) which is equal to X% by the orthogonality (2), i.e., Yy =
x(l)X In particular if H = 1 then Y,4(9) = x(9)¢(1) = x(g) for all
g € G, since ¢ € Irry(1).
(ii) A1 ¥ )\2(1) = ﬁZxEG a’l(m,x_l))q(x‘l))\g(x) = </\1,)\2>a,G
from (1). And for any g € G, we have

x(g) = IGIZa z,z oz, g)x(z 9)x(@)

zeG
= }mx(g)
= Yxx(g),

by (i). Moreover due to (1), we obtain

Yys(1) = |H|Za‘1hh Dx(R)e(h™Y) = {xl, S)ab = exo:

heH

(iii) Since $(z) = 0 for z € G — H, we have

x*$(9)=ﬁll—% S ol h et g)x(hg)o(h)

heGNH

Z ~Hh, A Na(h™, g)x (R g)¢(R)

heH
x¢(g)-
ad

When o and 3 are cohomologous cocycles in Z2(G, F*), there is a
complete parallelism between a- and (-characters. In fact, if « = §(dt)
for some t : G — F* with t(1) = 1 (6t : coboundary), and if x is an
a-character of G, then there is a unique S-character x’ such that x = tx’
([10, vol. 3, (1.2.5)]).
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THEOREM 5. Let a, 8 € Z%(G, F*) be cohomologous such that o =
B(dt) fort : G — F*, t(1) = 1. Let x; (i = 1,2) be irreducible a-
characters of G and x; be corresponding 3-characters of G such x; = tx}.
Then

(i) x1%a X2 =1t (X1 %8 X3)-

(ii) For H < G, let ¢1 be an irreducible a-character of H contained
in x1|g. Then there exists unique irreducible $-character ¢ of H
contained in x|g where the multiplicity of ¢y in x|y equals that
of ¢1 in x1|H, ie., ¢y 4, = C XA,

(iii) For o- and B-spherical functions Yy, 4, and Yy1 4., we have Yy, ¢, =
t Yo

Proof. Let g € G. Then (i) follows immediately from the calculation:

Xl *a X2(g)
Z o (z,z Valz™, ghxa (27 9)xa ()
xEG

~ G lzt_l(ﬂf )t Nz ez (@ Hg)t T (2 g)t(z T )t ()
zeG

ﬂ Y,z B, g)xi(z 7 g)xh(z)

Zﬁ (2718, )Xt (@ g)xa(w)

|G| z€CG
= t(g) - X1 %5 X2(9)-
Define ¢1 = t¢]. Then &) is a B-character of H, and
Xilg =t"xilg = t—l(cxwh‘bl + Z%¢j¢j)
J#£1
= Gy P + t-l(z Cx;6;05)-
7#1
Thus ¢7 C X1|m and ¢y ¢, = ¢y gt -
Obviously YX1¢1(1) = Cadr = Oy = YX/1¢1 (1) = (tY ¢/)(1) And
it is easy to see that ¢; = t¢], for ¢1(g) = J|%I|¢1( ) = ;H| t(g)#1(9) =
(t ¢,)(g) for any g € G. Thus due to (i) and Theorem 4 (iii), we obtain
Yiadr = X1 *a 1 = tX] *a 16) = t(X] g B1) =1 Yy
U
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THEOREM 6. Let x € Irr,(G) and ¢ € Irry(H). Then
an?

() x*¥b=xx, 6% ¢ = gl and g* ¢ =
*qb:% o and Yy * x =

(ii) We assume that ¢ C x|H- Then Yo

x(l) Yy¢. Thus, Yy * Yy = (1)¢(1)

(iii) Furthermore, <Yx¢,X>aG = 5('—3 and ( x$> ¢> G = ; R
Thus <YX¢’ YX¢>Q’G = (1)4)(1) = i¢ <Yx¢a > < (o3) >0¢,G'
Hence Y, = 0 if and only if c,4 = 0.

Proof. We first assume that « is a normal 2-cocycle. Then a-
character is a class function, and satisfies « 1(gy~,yg )a(yg™t,9) =

a Hy,y Ha(g,y™?!) and alg,y x(gy™!) = aly™t g)x(y'g) for any
g,y € G. So it follows that

= = S az,2 Va(z, 9)dy)x(z)

Za (w9 Healg, v xlgy™)d(y)

yEG
Za v,y ey 9)x (v 9)e(y)
yGG

= X *a ¢(g)

Now for any cocycle «, there always exists a normal 2-cocycle 3
cohomologous to . We write o = 3(6t) for ¢ : G — F*. Then there are
X' € Irtg(G) and ¢ € Irrg(H) such that x = tx’, ¢ =t¢' and ¢’ C X'|x.
And ¢ = t¢'. Thus we have

Prax =td *atx =t (¢ 5 X) =t (X %5 &) = X *a ¢.

In what follows, without loss of generality we may assume « is normal.
Similar to Theorem 4 (ii), it is obvious that ¢*x¢ = ﬁqﬁ. Nowlet g € G.
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Then
$xé Z oz, M o(z ™, 9)d(z 7 g) ()
wEG
IZa z,z Doz, g)d(z L g) ().
zE€Hy
If g € Hy then z71g € H, so it follows from (2) that
b % —ﬂ o Y,z Ha(z™! -1 x
¢ * (g) IHHHlx; (z,27 )a(z™", 9)¢(z 7" 9)¢(z)
_ |Gl ole) _ dlg)
T HI6(1)  ¢(1)

On the other hand, if g ¢ Hy then 27 1g ¢ Hy (otherwise if rlg=ac
Hy then g = za € Hy, contradlcts) Hence ¢(g) = ¢(z~1g) = 0, thus
¢*¢( )=0= ¢(1)¢( g9) =

Now the rest parts follow immediately from Theorem 4 (iii) that
~ 1

Y*:*~*=**~:——*:—Y,
YOFX =X PR X =X*X*0 x(l)X¢ ()X

- ~ - 1
Y * = ES % — —Y
X6 *P=X*Px¢ 5(1) X
and Yyg * Yy = x * Prx*xp= x(1)¢(1) Yy¢- Thus by Theorem 4 (ii) we
have Y )
c
Yis:X)a = Yy x x(1 xb ) x¢ ;
Yio(l) _ o

W 006 = 3 00)61) = Do)
a
For H < G, assume 1 € Irro(G) and ¢1 € Irr (H). If ¢1 is contained
in Xl\H with x1 # x and ¢1 # ¢, then it is clear that Y,y *xx1 =
Yo * ¢1 = 0. Thus (Y, x1)G = (Yys, #1)c =0, and (Yyg, Yyuen) = 0.
Hence Y, are orthogonal, so are linearly lndependent
A map 0 : G — F* is called an H-class function if 8 is constant on
H-conjugacy classes of G, i.e., 8(g) = 8(¢") for h € H, g € G. We will
show that the a-spherical function Y, 4 attached to x and ¢ is an H-class
function.

THEOREM 7. If a is normal then Y,y is an H-class function. More-
over, Y, 4 Is a class function on Gy if and only if x|g = cy¢®-
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Proof. Let g € G and k € H, and we will show that Y,4(g%) = Y,4(g).
Since a is normal, the projective a-characters x and ¢ are class functions
so x(g9) = x(g°) and ¢(k) = ¢(k") for any z € G and h € H. Hence it
follows that

Z o™ (h, b~ Yalh, g*)x(hg")o(h™)

heH
Z o™ (h, k™ a(h, ¢F)x(hg®)d((71)F ).
heHo

Set (h“l)’“_1 = s~! € H. Then hg* = (sg)*, and due to Lemma 2 we
have

Z a” sk, (sTHRa(sk, gF)x((sg)F)p(s™)
SEH()

T LY oY (s,57 (s, 9)x(s0)8(s7Y) = Yig(o)
s€Hy

Now we assume that x|g = cy¢d. Then x(1) = ¢,4¢(1) and

(Yeor X2 (;g‘f)) i) = Yoo Yaohoe - D Xhac:

by Theorem 5 (iii). The Cauchy Schwarz theorem on inner product
implies that Y, is a scalar multiple of x. Since x is a class function on
G, so is Y, 4. Conversely, suppose that Y,4 is a class function on Go.
Since all irreducible a-characters x; vanishes outside Gy and every class
function on Gy is spanned by all x;|g, ([10, v.3, (1.6.3)]), we may write,
for g € Gy,

Yyol9) = Z bixi(g) with b; € F* and x = x1.
€I (G)

Then by = (Yy4, X)a,Go and b; = (Yyg, Xi)a,co = 0 for i #1. So Y,e =
b1x, and

2
(24} = (Yo 0026 = B Xae = (b1X: bixdac

= <Yx¢»Yx¢>>a,G
- _ %
P(1)x(1)
Thus x(1) = cye®(1). But since x|g = cyp¢ + Z¢;é¢,-elrra(H) Cx; Py it
follows that all c,¢, = 0 and x|g = c,49. O
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4. Functional properties of a-spherical functions

This section is devoted to study functional properties of projective
a-characters and a-spherical functions on G. We may refer to [5] and
[19] in case of a = 1.

For each j = 1,...,s, let x; be an irreducible a-character of G, C;
be the distinct a-regular class of G with class sum cj = Zzecj Ug, and
let g; be a representative of C;. We assume that o is normal, so the
a-characters x; are class functions.

Define a map w,, with respect to an irreducible character x € Irro(G)

by
wy(ch) =1C; x(95) for each j
) =162
and assume w, extends F-linearly that wy (35, bjcl) = Y25, bjwy(c])
for b; € F*. Since x is a class function, x(g;) = x(z) for any z € C;, so
wy is well defined. We may refer to (8, p.35] when a = 1.

LEMMA 8. [10, vol.2, (3.3.1)] Let T' be an a-representation of G.
Then T* such that T (3 e bgtig) = >_ge bgT'(9) is an F-algebra ho-
momorphism on F%G.

THEOREM 9. Let T be an irreducible a-representation of G and let x
be an a-character afforded by T. Then w, is a mapping from the center
Z(F*@) to F, and T*(cj) = wx(c;”)I, where I is the identity matrix.

Proof. Clearly all class sums cj belong to Z(F*QG) for they constitute
an F-basis of Z(F*G) (10, vol.2,(2.6.3)]. Set cj = Y gec; Ug> With an
a-regular element g € G. Due to Lemma 8, T*(c;-") = decj T(g) and
the trace tr(T*(c}-")) = |C;|x(g).

Let x be any element in G. Then a(z, g) = a(g”, ), so

a”Hz,9)T(2)T(g) = T(zg) = T(xga~'z) = a~'(¢",2)T(¢")T(x)
and T(z)T(9)T(z)~! = T(g%). Hence we have

T(2)T*(c])T(z)™" = Y T(@)T(9)T(x)™" = > T(s")
QECj gECj
= ST =T,
yeCj
which shows that T*(c;.r) commutes with T'(z) for all z € G. Therefore
T*(cj) is a scalar matrix (see [4, (1.7)]), that is, T* (cj) = el with
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x(1) x x(1)-identity matrix I and ¢ € F*. Taking the trace of both
sides, it follows that

ex(1) = T*(cf) = |C;|x(9)

and € = |le% = wX(cJTL), thus T*(cf) =cl = wx(c;')l. O

COROLLARY 10. Let g be an a-regular element in the center Z(G).
Then T(g) = T*(ug) = wy(ug)l. Conversely if T(g) = el for some
€ € F* then € = wy(uy).

Proof. Since a(g,z) = a(z,g) and T(9)T(z) = T(z)T(g) for any
z € G, we have T(g) = el for some ¢ € F*. Taking trace, it follows
x(g) = ex(1) and € = %. Since [Cg| = 1, ¢f = ug and € = % =
wy (ug), thus T'(g) = wy(ug)I. On the other hand if T'(g) = eI for e € F*

then x(g) =ex(1) and e = ;‘C—E‘l’% = wy(ug). O

We now have formulae for multiplications of wy’s and of a-characters
x in Theorem 11, and of a-spherical functions in Theorem 12.

THEOREM 11. Let x be an irreducible a-character of G. Then

(i) wx(cj)wx(c;r) = (g, 95) D o1 Gijm wx(c}), where a;jm is the
class algebra constant, i.e., the number of pairs (z,y) for x € C;,
y € C; with zy € Cp,.

(ii) x(9)x(z) = ¥ 0(9,2) ¥ e x(97%) = X (2, 9) - T, cq X(297)-

Proof. Keep the same notation C; for a-regular class with representa-
tive g;. Since wx(cj)l = T*(cj) = Ec,— T(g;) by Theorem 9, (i) follows
immediately from

wy(wx (T = D olgi,9;)T(9ig5)
GG

8

= Y 95, 9))ai5m Y, Tlgm)

m=1 ngCm

8
= a(gi,9) D aiimT(ch)
m=1
S

= algi, 95) D, aigmwy(ch)1.

m=1
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Since x is a class function, we have, for any g,z and y € G,

D oxlgz®) = Y x(g7)) = D x(g¥¥*) = > x(g¥")

z€G z€G z€G teG
=) x(g¥z?)

Let g = g; € C; anda:zgjec-forsome1<ij<s. Then

> x(gr?) = ZZX

z€G yEGzEG
1 |G| |G|
= x(a;a;)
cllc |cj1 py) ZC )
IGI
= Cm Aijm m
\Gl

= GG 1’“” Z timnln)

Therefore (ii) follows from (i) that

_ x(1)x(1)
,G| g» ngw = |C||C zagj Zaz]mwx

z€G
X(l) X(l)w c+ weol(ct

()()

201

a

Now for an arithmetic property of a-spherical functions, let g,z € G.

Then
Yx¢(9)Yx¢( )

“Da Tl k, kDa(v, g)alk, )

x(v Né(v™)
_ o)
|H|?

P
v,keH

9)x(k

>

) p(
-
v,k,he H

- x(vg)x(kz)p(k~ v

k™
Yo, o Ve k, k™) a(v, g)a(k, z)a(k™t, v
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due to Theorem 11 (ii). Because x(g) = 0 when g is not a-regular, we
may assume g,& € G and v,k,h € H are all a-regular. If « is a normal
2-cocycle then ¢ is a class function so ¢(k~1v™") = ¢(v~"k~1), thus we
obtain

Yx¢(g)Yx¢(:v)

t Ya~t(k, k Ha(v, 9)alk, x)a(k ™, v

vk, h€H
( 9)x(kz)p(v™ k1)
Z a“l((k_la)h_l,(a_lk)h_l)a'l(k,k_l)a((k_la)h_l,g)
h
)

alk, z)a (k™2 (@) ) x (k1) g)x(kz)g(at)

by substituting v~"k~! = ¢! (so v = (k~*a)*). But by Theorem 11
(i), since

x((k7 )" g)x(kz) = x(k~*ag")x(zk)

= X ok 1agt, o) 3 x (K agh (ak)Y)
|G| yeG

_ x(1) a(klagh xk‘)ZX(GQ yzy ™),
,G, yeG

we have a multiplication formula of the spherical function Y, 4 that
Yx¢(g)Yx¢( z)

T;?P Z Z (k7' @ k)" o (k, k™)

a,k,he H yeG
a((k™t a)h” ,g)a(k,m)a(k_l, (a”lk)h_l)
. a(k'lagh, xk)x(aghyxy_k)gé(a'l).

(4)

In particular if & = 1 then the (ordinary) spherical function Y,

satisfies
> > xlagtyzy™F)p(a™?)

Yx¢(g)yx¢( )
a,k,he H yeG

¢_><_
|H® |G
?}{—)T—— >N Yaelgyzy™),

k,heH yeG
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this is the result obtained by Gallagher in [5]. Moreover if G is abelian
then

YX¢(9)YX¢’("E) lH'2 lGi Z ZYX¢ gz) X¢(QIL‘)

kheH yeG

Prior to this, it was proved that Y,4(g9)Yye(x) = ﬁ > hen Yyo(gz")
if ¢y¢ = 1 in [19, Corollary 1] by using more representation-theoretic
interpretations.

Now in order to have a simple formula for product of projective spher-
ical functions, we will assume that G is an abelian group in Theorem 12.
As mentioned before, the structure of Schur algebra over abelian group
has wide application in combinatorics, graph and design theory.

THEOREM 12. If G is abelian then the multiplication formula of Y, 4
is

Y0 (9)Yye(z) = x(1)p(1)a(g, x)Yye(gz) for any g,z € G.

Proof. We first notice that o € Z%(G, F*) is normal because G is
abelian. In fact, if u is any a-regular element and v is any element in
G, then v € Cg(u) and a(u,v) = a(v,u) = a(v,u’). Thus from (4), we
have

o(@

)
Z Z Yk ta, a7 k)a kb~ a(k ™ a, g)a(k, z)
k,heH yeG

a(k—,a k)a(k Yag, zk) - ala,a Yo" (a, gz)

. a—l(a a-l) (a, 9z)x(agz)p(a™)

— 2O ¥ Y oo ala ge)xagm)ta ),

a,k,heH yeG

Yyo(9)Yy
_>_>§_
|H|? |G|

where

I=a Yk a0 k)a (k, k™ )a(k ™ a, g)ak, x)a(k™, a7 1k)
alk lag, zk)a(a,a )" a, gz).
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We claim that I" equals a(g, z). If then, we have our desired formula
that

x¢(g)Yx¢( )
#(1) x(1) Z Z alg,z) - o~ Ya,a Ya(a, gz)x(agz)p(a™)

|H|3 I a,kheH yeG
= ¢(1)x Z o~ o(a, gz)x(agz)$(a ")
IH’ a€EH

= x(1)¢(1)a(g, ) Yyg(g2).

To prove the claim, we use the equalities
a ke, a7 k) = (k7Y 0)a(at K)o (g, a o Y (kL K)
and
ak™a7k) = alk 7L k) a7 k).
Then
I'=a(k ! a)ala™ k)a  a,a Do (k™ k) - ok, b )a(k a, g)
alk,z) - a(k™ k) a™ k)a(k ag, 2k)ala, a Ha " (a, gx)

= a(k™! a)a ™ (k, kY a(k ™ a, g)alk, x)a(k ag, zk)a " (a, g2).

Now by substituting some values of « in the above equation by
ok a, g)a(k tag, zk) = a(k™la, gzk)alg, zk),
and
a”!(a,97) = a7 (ag, 2)a "} (a, g)a(g, ),

we obtain that

T'=a(k™ a)a Yk k Ha(k ™ a, gzk)alg, zk)
a(k,z) - & (ag,z)a " (a, g)a(g, z).
Due to easy computations that
ak™ @Yo (k, k ok a, gzk)alg, z) = o~ (gz, k)a(ag, z)ala, g),
and
a(g, vk)a(k, z) = a(gz, k)a(y, ),
the claim follows immediately that
I = a~Y(gz, k)a(ag, 2)ala, 9) - alga, k)a(g, 2) - o~ (ag, )a" (s, )
= a(g, T).



Spherical functions on projective class algebras 205

COROLLARY 13. Let H = Z(G), and g,z € G satisfying a(a, gz)
ala, gz¥) foranya € H,y € G. Then Y,4(9)Yye(x)=x(1)d(1)a(y, z)

2 yec Yxa(ga?)-

Proof. Since H = Z(G), the formula in (4) shows that Y,4(g)Y,¢(x)
equals

%—X— Z o Yk la,a kYo (K, k7Y
l a,k,heH yeG

1
rel]

a(k™lae, g)alk, z)oa(k™, a7 k)
alk lag, zk) - a(a,a o t(a, gz¥)
- aYa,a Nl gxy)x(agwyw(a_l)

_AOXD S S e ai(e,a Y aa go¥)x(ags)s(a),

HP 1G] s
where I' = a~1(k~la,a"k)a= 1 (k, k~)a(kLa, g)a(k, z)a(k~, a=1k)
a(k™tag, zk)a(a,aHa(a, gzv).
It is easy to see I' = a(a, gz)a(g,z)a (a, gz¥)a(k, z)a"(x, k) by

Lemma 2. But since k¥ € H = Z(G), a(k,z) = a(z,k). And since
afa, gz) = ala, gz¥), it follows that I' = a(g, x) and

Y56(9) Yo () = x(1)o( |G| Z Yyo(gz¥)
yeG

5. Subclass algebras of twisted group algebra

In this section, we investigate how a-spherical functions on G work
over Z(F*G) and over Cpag(F“H), where both Z(F*G) and Crag
(F*H) are projective Schur algebras in F*G. By keeping the notations
M; (j=1,...,s), x5, Cj and cj = Zmecj ugz as before, let f; be the
nonzero primitive central idempotent of F*G such that each M; lies
over f; (i.e., M;f; # 0), and let {g;} be a set of representatives of C;.
We assume that a € Z%(G, F*) is normal.

LeEMmMA 14. Each f; forms IGI S o gk, 95 )x; (g7 e in
Z(F*G).
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Proof. The idempotent f; equals %de&; o 1g,97)x; (97 ug

([10, vol. 3, (1.11.1)]). Since x;(g) = x;j(gx) and a(g,97") = a(gk, g5 ")
for all g € Cg, we have

fi = XJ 1) Z Z gk,gk )Xj(g]g )ugk

k=1 gr€Cy

= |G| Za (9K, 9), X](gk )C}:a

and this belongs to Z(F*G) because ¢ constitutes a basis of Z(F*G).
(]

THEOREM 15. Over Z(F*G), all Z(F*G)f; are irreducible modules
with dimension 1, and each w,, is a linearly independent irreducible
character corresponding to the simple module Z(F®G)f;. In particular,

wy; (f1) = &5

‘Proof. Since F*G is decomposed into F*G f1 @ - - @ F*G fs, we have

&
Z(F*G) = Z(F*G)[1® - ® Z(F*G)fs = (D Z(F*G)f,
j=1
where Z(F*G)f; is a simple two sided ideal of Z(F*G). Compar-
ing dimensions, we have s = dim Z(F*G) = }_;_; dim Z(F°G)fj, so
dim Z(F*G)f; =1 for all j.
Since wy, is defined on Z(F*G), w,, maps f; to

o () = 23 Za (57 Pt e 220

= (|G|Za 9,9 xi(g7)x;(9)

9€Go

= 51
Thus each wy, is a linearly independent irreducible character of Z(F*G)
corresponding to Z(F*G)f;. O



Spherical functions on projective class algebras 207

Similar to the symbols M;, f; and x; over F*G, let N; be an ir-
reducible F*H-module which affords an a-character ¢;, and e; be a
primitive central idempotent of F*H with Nje; # 0 for ¢ = 1,...,t.
Then F*G = @Y 5_; Endp(M;) and F*H = &) ;_, Endr(N;). Each
M;, viewed as a left F*H-module, is uniquely written by M;|pag =
@®t_,cijN;, where ¢;j = Cy;¢; 1S the one satisfying XjlH = Zle CijPi-

THEOREM 16. Over Cpag(F*H), alle;M; (i =1,..,t; j =1,..,5) are
irreducible modules with dimension c;;.

Proof. Each e;M; is an irreducible Crag(F®H)-module by defin-
ing g(e;m) = ei(gm) € e;M; for ¢ € Crag(F*H), m € M;. The fact
dim(e;M;) = ¢;; was proved in [9, Corollary 2.2] when o = 1, and the
proof can be modified to twisted group algebra. Indeed, Hompa gy (F*He;,
M;) is an Cpag(F*H)-module and is isomorphic to e;M; under ¥ to
Y(e;) for any ¢ € Hompe g (F*He;, M;). Thus

eiM; = Hompa (F*He;, M;) = Hompe g (Ni, ®f—;ck; Nk)
= ¢ijHompa g (N;, N;),

so that dim(eiMj) = dim(cinompaH(Ni, Nz)) = Cij- O

Let P be the set of a-regular classes Dy in H with class sum df =
Y acD, Ya- And let Q be the set of a-H-regular classes & in G with

ey = Exesy ug. Let S be an F-algebra generated by all a-H-regular

class sums e;j", ie, §= ®y€GOFe;‘. Since Q is a partition of G with
E1 = &1 and & = {1}, S is a projective Schur algebra over G in
F®G. Moreover since e} constitutes a basis of Crag(F*H) (see [10,
v.2, (6.2.3)]), S is equal to Cpeg(F*H) whose dimension is the number
of a-H-regular classes in G.

Let ¥;; (i = 1,..,t;5 = 1,..,8) be irreducible characters that corre-
spond to S-modules e;M; of dimension ¢;; (Theorem 16), so deg;; =
Cij = dim(eiMj). A

THEOREM 17. Let Y3 be the F-linearly extended map of Y;; = Yy,4,
to F*G where ¢; C x;|u. Then Y}|z(rery = cijws;, = Yij|z(papr). Thus
over Z(F*H), Y} is a character corresponding to e;Mj.

Proof. Let by € F*. The extended map Y3 : F*G — F is determined
by
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}/Z;(Z byug) = Z beYi;(g)

geG geG

= > byggre ki alh s (ha)es (7).
g€G,heH

Since the restriction ;]| z(Fe /) can be written as a linear combination
of irreducible characters wy, on Z(F*H) (Theorem 15), we may write
t
"/)ij|Z(FaH) = Zbijk w¢k fOI‘ some bijlc Z 0.
k=1

In terms of S-module e;M; and of Z(F*H)-module Z(F*H)ej that
correspond to 1;; and wg, respectively (Theorems 15, 16), the equality
can be interpreted by

eiMjIZ(FQH) = @Z=1biij(FaH)ek.
By multiplying e; to both sides of the above equation, it follows that
eiMj |Z(F°‘H) = eieiMj ‘Z(FO‘H) = @zzlbiij(FaH)eiek = bmzZ(FaH)el

Comparing dimensions of both sides, we have b;j; = ¢;; and b = 0
for i # k, for dim(Z(F®H)e;) = 1. Thus 9ij|zpap) = cijwg, and
eiMj|z(rapy = ¢ Z(F*H)e.

On the other hand, since dif = > —acp,, U forms a basis of Z(F*H),
Z(F“H) is a projective Schur subalgebra whose dimension is the number
of a-regular classes in H. Then since Y;; is an H-class function (Theorem
7), it follows that

Y5(dy)
= |Dn[Y35(h)

= =2 % " a7 (a,a Ho(a, h)x;(ah)pi(a)

= 20 @aaleh) (Cijgbi(ah) +> Clj¢l(ah))¢i(a_1)
acH o
= —— Z aYa,a Hala, h)eijpi(ah)gi(a™) = Cijlphlqbi(h)

¢i(1)

where the fourth equality is due to the orthogonality relation in (2). O
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We observe degwy, = 1, because c¢;; = degv;; = ¢;; degwy,. When
a = 1, the equality 1| 7(repm) = cijwg, was proved in [9, Theorem 3.1].
Let S = Cpag(F*H). For the projective Schur subalgebra Z(F*H)
of S, an irreducible character wg, was defined over Z(F*H) in Theo-

rem 15 that wy,(d) = IDh|2:E’3 for dif = > aep,, Ya- And its induced

character wgi on S is defined in the following way. First we let

I
(s:8—8, (s(2)= Z cmL(;|<€y|t2"'zfz+_1 for z€ 8,
L Bl
Y

where Q consists of a-H-regular classes £, in G' with class sum e} ([15,
Section 1]). Similarly, let (z(papy : Z(F*H) — Z(F*H) be defined in

the same manner as is determined (s. Let dy = (z(pe H)(df). Then the

map wgi is constructed by

1 D 1
wgi : S — F* wgi = omnen|Dhl

a i " CS)
lemyecl€y] wp,(do)
where Wy, : § — F™ is the extension of wg, (i.e., for any z € S, Wy, (2) =
we, (z) if z is a class sum in P and @y, = 0 otherwise ) (see [15, Section

3]).
THEOREM 18. If wgi on S is irreducible then wy, = Y}|s for some j.

Proof. Since ;5] Z(FeH) = Cijwy; by Theorem 17, the reciprocity
theorem ([15, Satz 9] or [9, Theorem 3.1]) shows that wi =3 =1 Cij¥ij
foralll <z <¢.

Since wi is irreducible, there is 1 < k < s such that ¢ = 1 and
¢y = 0 for all I # k. Moreover we can observe that each &£ € Q is
contained in D, € P for some a € H, where P [resp. Q] means the set
of all a-regular classes Dy, in H [resp. o-H-regular classes £, in G] with
class sum dj [resp. ey . In fact, we suppose contrary that &, (y € G) is
not contained in any D, € P. Then &, N H =, otherwiseif be &, N H
then £, = & = {cbc™!c € H} might be a conjugacy class Dy in H,
which is a contradiction. Due to [9, Proposition 3.4], it follows that
> )a(l)wil(e;) = 0, where the sum is taken over all [ such that ¢; # 0.
But since ¢;x = 1 and ¢;; = 0 for all [ # k, we have 0 = Xk(l)tbik(e;'),
s0 Y (e, ) = 0 for all ef € §. This yields a contradiction that 9 is an
irreducible character of § which is generated by all e;.
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Thus, for each y € G, there is a € H such that &, C D, in P. So we
have
~ N |€y] ¢i(a) [&y] _ o Bila) _ o di(y)
w¢’i(ey) _w¢@( )|D | |Da ¢’z(1) |Da| - |5y|¢z(1) =& ¢Z(1)

(refer to [9, (1.5)] or [15, Section 3]), because y and a are H-conjugate
Moreover since y and hy (for any h € H) belong to H, we obtain

t

xi(hy) = xilm(hy) =Y cinds(hy) = candi(hy) = ¢i(hy).

i=1
But since Y is an H-class function, it follows that

Yils(ed) = Y (D ua) = 1,Vir(y)

TEELy

|£ | Z a(h, y)xk(hy)di(h™1)

hEH
_ 16 |

H| > a7 (b, B Yadh, y)u(hy)gi(h )

heH
e %i(y)

by (2). Hence this proves Yils = &y,

O
It would be nice if we know any explicit relations of Y% on S to wg
THEOREM 19. If cij # 0, then e;f; = $QXA T - a(g,g71)Y;

. 1] ) 1ty — G g€Go 9.9 ) t]

(g“l)ug = fje; is a distinct block idempotent of S.

Proof. Tt is easy to see that
|G|
— It
¢i(1)x;(1)"
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Z Za (gh™" kg~ Mo (B k™ a(gh ™ h)xj (g™ )i(h ™ ug

gGG heH

=Y "ol 1)| > oMbk a(h, g i (hg ™) i(h g
geG hEH

=Y a7 Mg, 97 Yslg ug.

geG

Since Z(F*H) and Z(F*G) are contained in Z(S), the central idempo-
tents e; and f; belong to Z(S) and e; f; is a central primitive orthogonal
idempotent of S. (I
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