SPHERICAL FUNCTIONS ON PROJECTIVE CLASS ALGEBRAS

EUNMI CHOI

ABSTRACT. Let $F^{\alpha}G$ be a twisted group algebra with basis $\{u_g|g\in G\}$ and $\mathcal{P}=\{\mathcal{C}_g|g\in G\}$ be a partition of G. A projective class algebra associated with \mathcal{P} is a subalgebra of $F^{\alpha}G$ generated by all class sums $\sum_{x\in\mathcal{C}_g}u_x$. A main object of the paper is to find interrelationships of projective class algebras in $F^{\alpha}G$ and in $F^{\alpha}H$ for H< G. And the α -spherical function will play an important role for the purpose. We find functional properties of α -spherical functions and investigate roles of α -spherical functions as characters of projective class algebras.

1. Introduction

Let G be a finite group and F^* be the multiplicative group of a field F with trivial G-action. For a 2-cocycle α in $Z^2(G, F^*)$, let $F^{\alpha}G$ be a twisted group algebra with F-basis $\{u_g|g\in G\}$, $u_1=1=1_{F^{\alpha}G}$ such that $u_qu_x=\alpha(g,x)u_{qx}$ for all $g,x\in G$.

Let $\mathcal{P} = \{\mathcal{C}_g | g \in G\}$ be a partition of G consisting of classes \mathcal{C}_g of G containing g and let $c_g^+ = \sum_{x \in \mathcal{C}_g} u_x$ be the class sum of \mathcal{C}_g . A subalgebra A of $F^{\alpha}G$ generated by all class sums c_g^+ (g in distinct class \mathcal{C}_g) is called a projective class algebra in $F^{\alpha}G$ associated with \mathcal{P} . Moreover if \mathcal{P} satisfies conditions that $\mathcal{C}_1 = \{1\}$ and $\mathcal{C}_g^{-1} = \mathcal{C}_{g^{-1}}$ for all $g \in G$ and if A has a unit element 1 then A is called a projective Schur algebra over G in $F^{\alpha}G$. If $\alpha = 1$ then A is a Schur algebra over G in group algebra FG, and we may refer to [1], [3], [9], and [21] for this topic.

In 1933, I. Schur introduced a special class of subalgebras of finite group algebra ([16]). The theory of these algebras, which were named

Received December 21, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 16H05, 16P99.

Key words and phrases: spherical functions, group characters.

Schur rings, was developed by Wielandt [20] in order to study permutation groups. During last 20 years, there have been important developments of Schur ring theory to algebraic combinatorics [2], indeed the Schur ring over cyclic groups was closely related to the isomorphism problem in cyclic graphs theory (see from [11] to [14]).

Let H be a subgroup of G. Let A be a projective Schur algebra over G in $F^{\alpha}G$ associated with \mathcal{P} , and A' be a projective Schur algebra over H in $F^{\alpha}H$ associated with partition \mathcal{P}' . For each $C' \in \mathcal{P}'$, if $C' = \cup C$ for some $C \in \mathcal{P}$ then A' is called a projective Schur subalgebra of A. The centralizer algebra $C_{F^{\alpha}G}(F^{\alpha}H)$ and $F^{\alpha}G$ itself are projective Schur algebras in $F^{\alpha}G$. And the center algebra $Z(F^{\alpha}H)$ is a projective Schur subalgebra of both $C_{F^{\alpha}G}(F^{\alpha}H)$ and $F^{\alpha}G$. The algebra $C_{FG}(FH)$ as an example of Schur algebra, and the representations and characters of the algebra have been studied in [18] and [20].

The purpose of the work is to study connections of projective Schur algebras in $F^{\alpha}G$ and in $F^{\alpha}H$. For this aim, a (projective) α -spherical function of G associated with H will play a central role. When $\alpha=1$, the spherical function was discussed in [5] and [19] as a character of the Schur algebra $C_{FG}(FH)$ in FG. Although projective Schur rings share many common properties with Schur rings, projective Schur rings are more complicate since they need 2-cocycle. In section 3, we develop α -spherical functions in accordance with group characters, and show that they are H-class functions. In section 4, we study functional properties of α -characters and α -spherical functions. We then investigate how α -spherical functions on G work over the center algebra as well as over the centralizer algebra in $F^{\alpha}G$ in section 5. We determine characters and modules of some projective Schur algebras.

Throughout the paper, let G be a finite group and α be a 2-cocycle in $Z^2(G, F^*)$ having trivial action over a field F of characteristic 0. Let $F^{\alpha}G$ be the twisted group algebra with basis $\{u_g|g\in G\}$, $u_1=1_{F^{\alpha}G}$, satisfying $u_gu_x=\alpha(g,x)u_{gx}$ for $g,x\in G$. For H< G, we use the same symbol for $\alpha\in Z^2(G,F^*)$ and its restriction to $Z^2(H,F^*)$, hence $F^{\alpha}H$ can be regarded as a subalgebra of $F^{\alpha}G$ consisting of linear combinations of $\{u_h|h\in H\}$. For an algebra A and a subalgebra B of A, we denote by Z(A) the center of A and by $C_A(B)$ the centralizer of B in A.

2. Preliminaries

Let H < G. We say $g, x \in G$ are H-conjugate if $g = x^h = hxh^{-1}$ for some $h \in H$. The H-conjugacy is an equivalence relation and G is

a union of H-(conjugacy) classes. $g \in G$ is said to be α -H-regular if $\alpha(g,h)=\alpha(h,g)$ for all $h \in H$ with gh=hg. If g is α -H-regular then so is any H-conjugate of g. An H-conjugacy class of G is α -H-regular class if it contains at least one α -H-regular element (see [10, v.2, p.182]). In particular if G=H then H-conjugate and α -H-regular are nothing but conjugate and α -regular respectively. A 2-cocycle $\alpha \in Z^2(G,F^*)$ is called normal if $\alpha(x,g)=\alpha(g^x,x)$ for any α -regular $g \in G$ and any $x \in G$.

LEMMA 1. [10, vol. 3, (1.6.2)] Let θ be an α -character of G and $g, x \in G$.

- (i) $\theta(g) = \alpha(x,g)\alpha^{-1}(g^x,x)\theta(g^x)$. If g is not α -regular then $\theta(g) = 0$.
- (ii) If α is normal then θ is a class function, i.e., $\theta(g) = \theta(g^x)$. The converse holds when F is a splitting field for $F^{\alpha}G$.

While an ordinary character is always a class function, projective α -character is a class function when α is normal. However since any cocycle is cohomologous to a normal cocycle over arbitrary field F ([10, vol. 3, (1.6.1)]), α -character can be regarded as a class function. Furthermore, α -characters are entirely determined by restrictions to the set of all α -regular elements G_0 because they vanish outside G_0 .

Let λ_i be any function on G. The α -inner product $\langle , \rangle_{\alpha,G}$ is defined by

(1)
$$\langle \lambda_1, \lambda_2 \rangle_{\alpha, G} = \frac{1}{|G|} \sum_{x \in G} \alpha^{-1}(x, x^{-1}) \lambda_1(x) \lambda_2(x^{-1})$$

([10, vol. 3, (1.11.8), p.69]). Hence for any $g \in G_0$ and for Kronecker delta δ_{ij} , the orthogonality relation of χ_i and $\chi_j \in \operatorname{Irr}_{\alpha}(G)$ follows that

(2)
$$\frac{1}{|G|} \sum_{x \in G} \alpha^{-1}(x, x^{-1}) \alpha(x, g) \chi_i(xg) \chi_j(x^{-1}) = \delta_{ij} \frac{\chi_i(g)}{\chi_i(1)}.$$

If $\chi \in \operatorname{Irr}_{\alpha}(G)$ then restriction $\chi|_{H}$ to H is a sum of irreducible α -characters of H, say $\chi|_{H} = \sum c_{\chi\phi_{i}}\phi_{i}$ for $\phi_{i} \in \operatorname{Irr}_{\alpha}(H)$ and $c_{\chi\phi_{i}} \geq 0$. The $c_{\chi\phi_{i}}$ is the multiplicity of ϕ_{i} in $\chi|_{H}$, and is equal to $\langle \chi|_{H}, \phi_{i} \rangle_{\alpha,G}$. In particular if $\phi \in \operatorname{Irr}_{\alpha}(H)$ is contained in $\chi|_{H}$ (denote $\phi \subset \chi|_{H}$), we write $\chi|_{H} = c_{\chi\phi}\phi + \sum_{\phi \neq \phi_{i} \in \operatorname{Irr}_{\alpha}(H)} c_{\chi\phi_{i}}\phi_{i}$.

Let $\chi \in \operatorname{Irr}_{\alpha}(G)$ and $\phi \in \operatorname{Irr}_{\alpha}(H)$ with $\phi \subset \chi|_{H}$. A map $Y_{\chi\phi}: G \to F^{*}$ defined by

(3)
$$Y_{\chi\phi}(g) = \frac{1}{|H|} \sum_{h \in H} \alpha^{-1}(h, h^{-1}) \alpha(h, g) \chi(hg) \phi(h^{-1})$$

is called a (projective) α -spherical function attached to χ and ϕ . If $\alpha=1$, the (ordinary) spherical function $Y_{\chi\phi}$ has analogous properties of group characters ([5], [19]). The classical theory of spherical functions is a well developed part of harmonic analysis that studies the functions on a real reductive Lie group. Group theoretical spherical functions were discussed in [6] and [7].

3. Projective spherical functions

We begin with easy calculations of 2-cocycles for next use.

Lemma 2. (i) $\alpha(xz,z^{-1}y)=\alpha^{-1}(x,z)\alpha^{-1}(z^{-1},y)\alpha(z,z^{-1})\alpha(x,y)$ for $x,y,z\in G$.

(ii) In particular, $\alpha(zx, yz^{-1}) = \alpha^{-1}(z, x)\alpha^{-1}(y, z^{-1})\alpha(z, z^{-1})\alpha(x, y)$, if x, y are α -regular in group G_0 and α is normal. Moreover $\alpha(x^z, y^z) = \alpha(x, y)$.

Proof. Since $u_{x^{-1}} = \alpha(x, x^{-1})u_x^{-1}$, it is obvious that

$$\alpha(xz,z^{-1}y)=u_{xz}u_{z^{-1}y}u_{xzz^{-1}y}^{-1}=\alpha^{-1}(x,z)\alpha^{-1}(z^{-1},y)\alpha(z,z^{-1})\alpha(x,y).$$

Let α be normal and x, y be α -regular elements in group G_0 . Then $\alpha(z, x) = \alpha(x^z, z)$ and $u_z u_x u_z^{-1} = u_{x^z}$ for any $z \in G$. Thus

$$\begin{split} \alpha(zx,yz^{-1}) &= u_{zx}u_{yz^{-1}}u_{zxyz^{-1}}^{-1} \\ &= \alpha^{-1}(z,x)\alpha^{-1}(y,z^{-1})u_zu_xu_yu_{z^{-1}}(u_zu_{xy}u_z^{-1})^{-1} \\ &= \alpha^{-1}(z,x)\alpha^{-1}(y,z^{-1})\alpha(z,z^{-1})\alpha(x,y). \end{split}$$

Moreover,

$$\alpha(x^z, y^z) = u_{x^z} u_{y^z} u_{(xy)^z}^{-1} = u_z u_x u_y u_z^{-1} (u_z u_{xy} u_z^{-1})^{-1} = \alpha(x, y).$$

Let us define a convolution $*_{\alpha}$ (with respect to α) of functions λ_i on G by

$$\lambda_1 *_{\alpha} \lambda_2(g) = \frac{1}{|G|} \sum_{xy=g} \alpha^{-1}(x, x^{-1}) \alpha(x^{-1}, g) \lambda_1(y) \lambda_2(x)$$
$$= \frac{1}{|G|} \sum_{x \in G} \alpha^{-1}(x, x^{-1}) \alpha(x^{-1}, g) \lambda_1(x^{-1}g) \lambda_2(x) \quad \text{for } g \in G.$$

Lemma 3. The convolution $*_{\alpha}$ satisfies the associative law.

Proof. For any functions λ_i $(i=1,\ldots,3)$ of G and $g\in G$, we have

$$\begin{split} &\lambda_{1} *_{\alpha} (\lambda_{2} *_{\alpha} \lambda_{3})(g) \\ &= \frac{1}{|G|} \sum_{z \in G} \alpha^{-1}(z, z^{-1}) \alpha(z^{-1}, g) \lambda_{1}(z^{-1}g) (\lambda_{2} *_{\alpha} \alpha_{3})(z) \\ &= \frac{1}{|G|^{2}} \sum_{z,y \in G} \alpha^{-1}(z, z^{-1}) \alpha(z^{-1}, g) \cdot \alpha^{-1}(y, y^{-1}) \alpha(y^{-1}, z) \\ &\quad \cdot \lambda_{1}(z^{-1}g) \lambda_{2}(y^{-1}z) \lambda_{3}(y) \\ &= \frac{1}{|G|^{2}} \sum_{x,y \in G} \alpha^{-1}(yx, (yx)^{-1}) \alpha((yx)^{-1}, g) \alpha^{-1}(y, y^{-1}) \alpha(y^{-1}, yx) \\ &\quad \cdot \lambda_{1}(x^{-1}y^{-1}g) \lambda_{2}(x) \lambda_{3}(y) \qquad \text{(by substituting} \quad y^{-1}z = x). \end{split}$$

Easy computations in Lemma 2 (i) give rise to the next relations that

$$\alpha((yx)^{-1}, g) = \alpha(x^{-1}, y^{-1}g)\alpha(y^{-1}, g)\alpha^{-1}(x^{-1}, y^{-1}),$$

$$\alpha(y^{-1}, yx) = \alpha(y^{-1}, y)\alpha^{-1}(y, x),$$

and

$$\alpha^{-1}(yx,(yx)^{-1}) = \alpha^{-1}(y,y^{-1})\alpha^{-1}(x,x^{-1})\alpha(y,x)\alpha(x^{-1},y^{-1}).$$

Therefore, the associative law follows immediately from the calculation that

$$\lambda_{1} *_{\alpha} (\lambda_{2} *_{\alpha} \lambda_{3})(g)$$

$$= \frac{1}{|G|^{2}} \sum_{x,y \in G} \alpha^{-1}(y, y^{-1}) \alpha^{-1}(x, x^{-1}) \alpha(x^{-1}, y^{-1}g) \alpha(y^{-1}, g)$$

$$\cdot \lambda_{1}(x^{-1}y^{-1}g) \lambda_{2}(x) \lambda_{3}(y)$$

$$= \frac{1}{|G|} \sum_{y \in G} \alpha^{-1}(y, y^{-1}) \alpha(y^{-1}, g) \frac{1}{|G|} \sum_{x \in G} \alpha^{-1}(x, x^{-1}) \alpha(x^{-1}, y^{-1}g)$$

$$\cdot \lambda_{1}(x^{-1}y^{-1}g) \lambda_{2}(x) \lambda_{3}(y)$$

$$= \frac{1}{|G|} \sum_{y \in G} \alpha^{-1}(y, y^{-1}) \alpha(y^{-1}, g) (\lambda_{1} *_{\alpha} \lambda_{2})(y^{-1}g) \lambda_{3}(y)$$

$$= (\lambda_{1} *_{\alpha} \lambda_{2}) *_{\alpha} \lambda_{3}(g).$$

If no confusion can occur, notation * will be used for $*_{\alpha}$. We show that the α -spherical function $Y_{\chi\phi}$ is a convolution product of $\chi \in \operatorname{Irr}_{\alpha}(G)$ and $\phi \in \operatorname{Irr}_{\alpha}(H)$.

THEOREM 4. (i) If H = 1 or H = G then all $Y_{\chi\phi}$ are α -characters of G.

(ii) For any functions λ_i on G, $\lambda_1 * \lambda_2(1) = \langle \lambda_1, \lambda_2 \rangle_{\alpha, G}$. And

$$Y_{\chi\chi} = \chi * \chi = \frac{1}{\chi(1)}\chi, \quad \text{and} \quad Y_{\chi\phi}(1) = \langle \chi|_H, \phi \rangle_{\alpha,H} = c_{\chi\phi}.$$

(iii) $Y_{\chi\phi} = \chi * \tilde{\phi}$, where $\tilde{\phi}(x) = \frac{|G|}{|H|}\phi(x)$ if $x \in H$ and 0 otherwise.

Proof. (i) If G = H, then $Y_{\chi\phi}(g) = \frac{1}{|G|} \sum_{x \in G} \alpha^{-1}(x, x^{-1}) \alpha(x, g)$ $\chi(xg)\chi(x^{-1})$ which is equal to $\frac{\chi(g)}{\chi(1)}$ by the orthogonality (2), i.e., $Y_{\chi\phi} = \frac{1}{\chi(1)}\chi$. In particular if H = 1 then $Y_{\chi\phi}(g) = \chi(g)\phi(1) = \chi(g)$ for all $g \in G$, since $\phi \in \operatorname{Irr}_{\alpha}(1)$.

(ii) $\lambda_1 * \lambda_2(1) = \frac{1}{|G|} \sum_{x \in G} \alpha^{-1}(x, x^{-1}) \lambda_1(x^{-1}) \lambda_2(x) = \langle \lambda_1, \lambda_2 \rangle_{\alpha, G}$ from (1). And for any $g \in G$, we have

$$\chi * \chi(g) = \frac{1}{|G|} \sum_{x \in G} \alpha^{-1}(x, x^{-1}) \alpha(x^{-1}, g) \chi(x^{-1}g) \chi(x)$$
$$= \frac{1}{\chi(1)} \chi(g)$$
$$= Y_{\chi\chi}(g),$$

by (i). Moreover due to (1), we obtain

$$Y_{\chi\phi}(1) = \frac{1}{|H|} \sum_{h \in H} \alpha^{-1}(h, h^{-1}) \chi(h) \phi(h^{-1}) = \langle \chi |_H, \phi \rangle_{\alpha, H} = c_{\chi\phi}.$$

(iii) Since $\tilde{\phi}(z) = 0$ for $z \in G - H$, we have

$$\chi * \tilde{\phi}(g) = \frac{1}{|G|} \frac{|G|}{|H|} \sum_{h \in G \cap H} \alpha^{-1}(h, h^{-1}) \alpha(h^{-1}, g) \chi(h^{-1}g) \phi(h)$$

$$= \frac{1}{|H|} \sum_{h \in H} \alpha^{-1}(h, h^{-1}) \alpha(h^{-1}, g) \chi(h^{-1}g) \phi(h)$$

$$= Y_{\chi \phi}(g).$$

When α and β are cohomologous cocycles in $Z^2(G,F^*)$, there is a complete parallelism between α - and β -characters. In fact, if $\alpha=\beta(\delta t)$ for some $t:G\to F^*$ with t(1)=1 ($\delta t:$ coboundary), and if χ is an α -character of G, then there is a unique β -character χ' such that $\chi=t\chi'$ ([10, vol. 3, (1.2.5)]).

THEOREM 5. Let $\alpha, \beta \in Z^2(G, F^*)$ be cohomologous such that $\alpha = \beta(\delta t)$ for $t: G \to F^*$, t(1) = 1. Let χ_i (i = 1, 2) be irreducible α -characters of G and χ'_i be corresponding β -characters of G such $\chi_i = t\chi'_i$. Then

- (i) $\chi_1 *_{\alpha} \chi_2 = t (\chi'_1 *_{\beta} \chi'_2).$
- (ii) For H < G, let ϕ_1 be an irreducible α -character of H contained in $\chi_1|_H$. Then there exists unique irreducible β -character ϕ_1' of H contained in $\chi_1'|_H$ where the multiplicity of ϕ_1' in $\chi_1'|_H$ equals that of ϕ_1 in $\chi_1|_H$, i.e., $c_{\chi_1\phi_1} = c_{\chi_1'\phi_1'}$.
- (iii) For α and β -spherical functions $Y_{\chi_1\phi_1}$ and $Y_{\chi'_1\phi'_1}$, we have $Y_{\chi_1\phi_1} = t Y_{\chi'_1\phi'_1}$.

Proof. Let $g \in G$. Then (i) follows immediately from the calculation:

$$\begin{split} &\chi_1 *_{\alpha} \chi_2(g) \\ &= \frac{1}{|G|} \sum_{x \in G} \alpha^{-1}(x, x^{-1}) \alpha(x^{-1}, g) \chi_1(x^{-1}g) \chi_2(x) \\ &= \frac{1}{|G|} \sum_{x \in G} t^{-1}(x) t^{-1}(x^{-1}) t(xx^{-1}) t(x^{-1}) t(g) t^{-1}(x^{-1}g) t(x^{-1}g) t(x) \\ & \beta^{-1}(x, x^{-1}) \beta(x^{-1}, g) \chi_1'(x^{-1}g) \chi_2'(x) \\ &= \frac{t(g)}{|G|} \sum_{x \in G} \beta^{-1}(x, x^{-1}) \beta(x^{-1}, g) \chi_1'(x^{-1}g) \chi_2'(x) \\ &= t(g) \cdot \chi_1' *_{\beta} \chi_2'(g). \end{split}$$

Define $\phi_1 = t\phi_1'$. Then ϕ_1' is a β -character of H, and

$$\begin{split} \chi_1'|_H &= t^{-1}\chi_1|_H = t^{-1}(c_{\chi_1\phi_1}\phi_1 + \sum_{j\neq 1} c_{\chi_j\phi_j}\phi_j) \\ &= c_{\chi_1\phi_1}\phi_1' + t^{-1}(\sum_{j\neq 1} c_{\chi_j\phi_j}\phi_j). \end{split}$$

Thus $\phi'_1 \subset \chi'_1|_H$ and $c_{\chi_1\phi_1} = c_{\chi'_1\phi'_1}$.

Obviously $Y_{\chi_1\phi_1}(1) = c_{\chi_1\phi_1} = c_{\chi_1'\phi_1'} = Y_{\chi_1'\phi_1'}(1) = (tY_{\chi_1'\phi_1'})(1)$. And it is easy to see that $\tilde{\phi}_1 = t\tilde{\phi}_1'$, for $\tilde{\phi}_1(g) = \frac{|G|}{|H|}\phi_1(g) = \frac{|G|}{|H|}t(g)\phi_1'(g) = (t \ \tilde{\phi}_1')(g)$ for any $g \in G$. Thus due to (i) and Theorem 4 (iii), we obtain

$$Y_{\chi_1\phi_1} = \chi_1 *_{\alpha} \tilde{\phi}_1 = t\chi_1' *_{\alpha} t\tilde{\phi}_1' = t(\chi_1' *_{\beta} \tilde{\phi}_1') = t Y_{\chi_1'\phi_1'}.$$

THEOREM 6. Let $\chi \in Irr_{\alpha}(G)$ and $\phi \in Irr_{\alpha}(H)$. Then

- (i) $\chi * \tilde{\phi} = \tilde{\phi} * \chi$, $\phi * \phi = \frac{1}{\phi(1)}\phi$, and $\tilde{\phi} * \tilde{\phi} = \frac{1}{\phi(1)}\tilde{\phi}$.
- (ii) We assume that $\phi \subset \chi|_H$. Then $Y_{\chi\phi} * \tilde{\phi} = \frac{1}{\phi(1)} Y_{\chi\phi}$ and $Y_{\chi\phi} * \chi = \frac{1}{\chi(1)} Y_{\chi\phi}$. Thus, $Y_{\chi\phi} * Y_{\chi\phi} = \frac{1}{\chi(1)\phi(1)} Y_{\chi\phi}$.
- (iii) Furthermore, $\langle Y_{\chi\phi}, \chi \rangle_{\alpha,G} = \frac{c_{\chi\phi}}{\chi(1)}$ and $\langle Y_{\chi\phi}, \tilde{\phi} \rangle_{\alpha,G} = \frac{c_{\chi\phi}}{\phi(1)}$. Thus $\langle Y_{\chi\phi}, Y_{\chi\phi} \rangle_{\alpha,G} = \frac{c_{\chi\phi}}{\chi(1)\phi(1)} = \frac{1}{c_{\chi\phi}} \langle Y_{\chi\phi}, \chi \rangle_{\alpha,G} \langle Y_{\chi\phi}, \tilde{\phi} \rangle_{\alpha,G}$. Hence $Y_{\chi\phi} = 0$ if and only if $c_{\chi\phi} = 0$.

Proof. We first assume that α is a normal 2-cocycle. Then α -character is a class function, and satisfies $\alpha^{-1}(gy^{-1}, yg^{-1})\alpha(yg^{-1}, g) = \alpha^{-1}(y, y^{-1})\alpha(g, y^{-1})$ and $\alpha(g, y^{-1})\chi(gy^{-1}) = \alpha(y^{-1}, g)\chi(y^{-1}g)$ for any $g, y \in G$. So it follows that

$$\begin{split} &\tilde{\phi} *_{\alpha} \chi(g) \\ &= \frac{1}{|G|} \sum_{xy=g} \alpha^{-1}(x, x^{-1}) \alpha(x^{-1}, g) \tilde{\phi}(y) \chi(x) \\ &= \frac{1}{|G|} \sum_{y \in G} \alpha^{-1}(gy^{-1}, yg^{-1}) \alpha(yg^{-1}, g) \chi(gy^{-1}) \tilde{\phi}(y) \\ &= \frac{1}{|G|} \sum_{y \in G} \alpha^{-1}(y, y^{-1}) \alpha(g, y^{-1}) \chi(gy^{-1}) \tilde{\phi}(y) \\ &= \frac{1}{|G|} \sum_{y \in G} \alpha^{-1}(y, y^{-1}) \alpha(y^{-1}, g) \chi(y^{-1}g) \tilde{\phi}(y) \\ &= \chi *_{\alpha} \tilde{\phi}(g). \end{split}$$

Now for any cocycle α , there always exists a normal 2-cocycle β cohomologous to α . We write $\alpha = \beta(\delta t)$ for $t: G \to F^*$. Then there are $\chi' \in \operatorname{Irr}_{\beta}(G)$ and $\phi' \in \operatorname{Irr}_{\beta}(H)$ such that $\chi = t\chi'$, $\phi = t\phi'$ and $\phi' \subset \chi'|_{H}$. And $\tilde{\phi} = t\tilde{\phi}'$. Thus we have

$$\tilde{\phi} *_{\alpha} \chi = t \tilde{\phi}' *_{\alpha} t \chi' = t (\tilde{\phi}' *_{\beta} \chi') = t (\chi' *_{\beta} \tilde{\phi}') = \chi *_{\alpha} \tilde{\phi}.$$

In what follows, without loss of generality we may assume α is normal. Similar to Theorem 4 (ii), it is obvious that $\phi * \phi = \frac{1}{\phi(1)} \phi$. Now let $g \in G$.

Then

$$\tilde{\phi} * \tilde{\phi}(g) = \frac{1}{|G|} \sum_{x \in G_0} \alpha^{-1}(x, x^{-1}) \alpha(x^{-1}, g) \tilde{\phi}(x^{-1}g) \tilde{\phi}(x)$$

$$= \frac{1}{|H|} \sum_{x \in H_0} \alpha^{-1}(x, x^{-1}) \alpha(x^{-1}, g) \tilde{\phi}(x^{-1}g) \phi(x).$$

If $g \in H_0$ then $x^{-1}g \in H$, so it follows from (2) that

$$\tilde{\phi} * \tilde{\phi}(g) = \frac{|G|}{|H||H|} \sum_{x \in H_0} \alpha^{-1}(x, x^{-1}) \alpha(x^{-1}, g) \phi(x^{-1}g) \phi(x)$$
$$= \frac{|G|}{|H|} \frac{\phi(g)}{\phi(1)} = \frac{\tilde{\phi}(g)}{\phi(1)}.$$

On the other hand, if $g \notin H_0$ then $x^{-1}g \notin H_0$ (otherwise if $x^{-1}g = a \in H_0$ then $g = xa \in H_0$, contradicts). Hence $\tilde{\phi}(g) = \tilde{\phi}(x^{-1}g) = 0$, thus $\tilde{\phi} * \tilde{\phi}(g) = 0 = \frac{1}{\tilde{\phi}(1)}\tilde{\phi}(g) = 0$.

Now the rest parts follow immediately from Theorem 4 (iii) that

$$Y_{\chi\phi} * \chi = \chi * \tilde{\phi} * \chi = \chi * \chi * \tilde{\phi} = \frac{1}{\chi(1)} \chi * \tilde{\phi} = \frac{1}{\chi(1)} Y_{\chi\phi},$$

$$Y_{\chi\phi} * \tilde{\phi} = \chi * \tilde{\phi} * \tilde{\phi} = \frac{1}{\phi(1)} Y_{\chi\phi}$$

and $Y_{\chi\phi} * Y_{\chi\phi} = \chi * \tilde{\phi} * \chi * \tilde{\phi} = \frac{1}{\chi(1)\phi(1)} Y_{\chi\phi}$. Thus by Theorem 4 (ii) we have

$$\langle Y_{\chi\phi}, \chi \rangle_G = Y_{\chi\phi} * \chi(1) = \frac{Y_{\chi\phi}(1)}{\chi(1)} = \frac{c_{\chi\phi}}{\chi(1)} ;$$

$$\langle Y_{\chi\phi}, Y_{\chi\phi} \rangle_G = \frac{Y_{\chi\phi}(1)}{\chi(1)\phi(1)} = \frac{c_{\chi\phi}}{\chi(1)\phi(1)} .$$

For H < G, assume $\chi_1 \in \operatorname{Irr}_{\alpha}(G)$ and $\phi_1 \in \operatorname{Irr}_{\alpha}(H)$. If ϕ_1 is contained in $\chi_1|_H$ with $\chi_1 \neq \chi$ and $\phi_1 \neq \phi$, then it is clear that $Y_{\chi\phi} * \chi_1 = Y_{\chi\phi} * \tilde{\phi}_1 = 0$. Thus $\langle Y_{\chi\phi}, \chi_1 \rangle_G = \langle Y_{\chi\phi}, \tilde{\phi}_1 \rangle_G = 0$, and $\langle Y_{\chi\phi}, Y_{\chi_1\phi_1} \rangle_G = 0$. Hence $Y_{\chi\phi}$ are orthogonal, so are linearly independent.

A map $\theta: G \to F^*$ is called an H-class function if θ is constant on H-conjugacy classes of G, i.e., $\theta(g) = \theta(g^h)$ for $h \in H$, $g \in G$. We will show that the α -spherical function $Y_{\chi\phi}$ attached to χ and ϕ is an H-class function.

THEOREM 7. If α is normal then $Y_{\chi\phi}$ is an H-class function. Moreover, $Y_{\chi\phi}$ is a class function on G_0 if and only if $\chi|_H = c_{\chi\phi}\phi$.

Proof. Let $g \in G$ and $k \in H$, and we will show that $Y_{\chi\phi}(g^k) = Y_{\chi\phi}(g)$. Since α is normal, the projective α -characters χ and ϕ are class functions so $\chi(g) = \chi(g^z)$ and $\phi(k) = \phi(k^h)$ for any $z \in G$ and $h \in H$. Hence it follows that

$$Y_{\chi\phi}(g^k) = \frac{1}{|H|} \sum_{h \in H_0} \alpha^{-1}(h, h^{-1})\alpha(h, g^k)\chi(hg^k)\phi(h^{-1})$$
$$= \frac{1}{|H|} \sum_{h \in H_0} \alpha^{-1}(h, h^{-1})\alpha(h, g^k)\chi(hg^k)\phi((h^{-1})^{k^{-1}}).$$

Set $(h^{-1})^{k^{-1}} = s^{-1} \in H$. Then $hg^k = (sg)^k$, and due to Lemma 2 we have

$$\begin{split} Y_{\chi\phi}(g^k) &= \frac{1}{|H|} \sum_{s \in H_0} \alpha^{-1}(s^k, (s^{-1})^k) \alpha(s^k, g^k) \chi((sg)^k) \phi(s^{-1}) \\ &= \frac{1}{|H|} \sum_{s \in H_0} \alpha^{-1}(s, s^{-1}) \alpha(s, g) \chi(sg) \phi(s^{-1}) \ = \ Y_{\chi\phi}(g). \end{split}$$

Now we assume that $\chi|_H = c_{\chi\phi}\phi$. Then $\chi(1) = c_{\chi\phi}\phi(1)$ and

$$\langle Y_{\chi\phi}, \chi \rangle_{\alpha,G}^2 = \left(\frac{c_{\chi\phi}}{\chi(1)}\right)^2 = \frac{c_{\chi\phi}}{\phi(1)\chi(1)} = \langle Y_{\chi\phi}, Y_{\chi\phi} \rangle_{\alpha,G} \cdot \langle \chi, \chi \rangle_{\alpha,G},$$

by Theorem 5 (iii). The Cauchy Schwarz theorem on inner product implies that $Y_{\chi\phi}$ is a scalar multiple of χ . Since χ is a class function on G, so is $Y_{\chi\phi}$. Conversely, suppose that $Y_{\chi\phi}$ is a class function on G_0 . Since all irreducible α -characters χ_i vanishes outside G_0 and every class function on G_0 is spanned by all $\chi_i|_{G_0}$ ([10, v.3, (1.6.3)]), we may write, for $g \in G_0$,

$$Y_{\chi\phi}(g) = \sum_{\chi_i \in \operatorname{Irr}_{\alpha}(G)} b_i \chi_i(g)$$
 with $b_i \in F^*$ and $\chi = \chi_1$.

Then $b_1 = \langle Y_{\chi\phi}, \chi \rangle_{\alpha,G_0}$ and $b_i = \langle Y_{\chi\phi}, \chi_i \rangle_{\alpha,G_0} = 0$ for $i \neq 1$. So $Y_{\chi\phi} = b_1\chi$, and

$$\left(\frac{c_{\chi\phi}}{\chi(1)}\right)^2 = \langle Y_{\chi\phi}, \chi \rangle_{\alpha,G}^2 = b_1^2 \langle \chi, \chi \rangle_{\alpha,G} = \langle b_1 \chi, b_1 \chi \rangle_{\alpha,G}
= \langle Y_{\chi\phi}, Y_{\chi\phi} \rangle_{\alpha,G}
= \frac{c_{\chi\phi}}{\phi(1)\chi(1)}.$$

Thus $\chi(1) = c_{\chi\phi}\phi(1)$. But since $\chi|_H = c_{\chi\phi}\phi + \sum_{\phi \neq \phi_i \in \operatorname{Irr}_{\alpha}(H)} c_{\chi\phi_i}\phi_i$, it follows that all $c_{\chi\phi_i} = 0$ and $\chi|_H = c_{\chi\phi}\phi$.

4. Functional properties of α -spherical functions

This section is devoted to study functional properties of projective α -characters and α -spherical functions on G. We may refer to [5] and [19] in case of $\alpha = 1$.

For each $j=1,\ldots,s$, let χ_j be an irreducible α -character of G, C_j be the distinct α -regular class of G with class sum $c_j^+ = \sum_{x \in C_j} u_x$, and let g_j be a representative of C_j . We assume that α is normal, so the α -characters χ_j are class functions.

Define a map ω_{χ} with respect to an irreducible character $\chi \in \operatorname{Irr}_{\alpha}(G)$ by

$$\omega_{\chi}(c_j^+) = |\mathcal{C}_j| \frac{\chi(g_j)}{\chi(1)}$$
 for each j

and assume ω_{χ} extends F-linearly that $\omega_{\chi}(\sum_{j=1}^{s} b_{j} c_{j}^{+}) = \sum_{j=1}^{s} b_{j} \omega_{\chi}(c_{j}^{+})$ for $b_{j} \in F^{*}$. Since χ is a class function, $\chi(g_{j}) = \chi(x)$ for any $x \in \mathcal{C}_{j}$, so ω_{χ} is well defined. We may refer to [8, p.35] when $\alpha = 1$.

LEMMA 8. [10, vol. 2, (3.3.1)] Let T be an α -representation of G. Then T^* such that $T^*(\sum_{g\in G}b_gu_g)=\sum_{g\in G}b_gT(g)$ is an F-algebra homomorphism on $F^{\alpha}G$.

THEOREM 9. Let T be an irreducible α -representation of G and let χ be an α -character afforded by T. Then ω_{χ} is a mapping from the center $Z(F^{\alpha}G)$ to F, and $T^{*}(c_{j}^{+}) = \omega_{\chi}(c_{j}^{+})I$, where I is the identity matrix.

Proof. Clearly all class sums c_j^+ belong to $Z(F^{\alpha}G)$ for they constitute an F-basis of $Z(F^{\alpha}G)$ [10, vol. 2,(2.6.3)]. Set $c_j^+ = \sum_{g \in \mathcal{C}_j} u_g$, with an α -regular element $g \in G$. Due to Lemma 8, $T^*(c_j^+) = \sum_{g \in \mathcal{C}_j} T(g)$ and the trace $\operatorname{tr}(T^*(c_j^+)) = |\mathcal{C}_j|\chi(g)$.

Let x be any element in G. Then $\alpha(x,g) = \alpha(g^x,x)$, so

$$\alpha^{-1}(x,g)T(x)T(g) = T(xg) = T(xgx^{-1}x) = \alpha^{-1}(g^x,x)T(g^x)T(x)$$

and $T(x)T(q)T(x)^{-1} = T(q^x)$. Hence we have

$$T(x)T^*(c_j^+)T(x)^{-1} = \sum_{g \in \mathcal{C}_j} T(x)T(g)T(x)^{-1} = \sum_{g \in \mathcal{C}_j} T(g^x)$$
$$= \sum_{g \in \mathcal{C}_j} T(g) = T^*(c_j^+),$$

which shows that $T^*(c_j^+)$ commutes with T(x) for all $x \in G$. Therefore $T^*(c_j^+)$ is a scalar matrix (see [4, (1.7)]), that is, $T^*(c_j^+) = \varepsilon I$ with

 $\chi(1) \times \chi(1)$ -identity matrix I and $\varepsilon \in F^*$. Taking the trace of both sides, it follows that

$$\varepsilon \chi(1) = \operatorname{tr} T^*(c_j^+) = |\mathcal{C}_j| \chi(g)$$

and
$$\varepsilon = |\mathcal{C}_j| \frac{\chi(g)}{\chi(1)} = \omega_{\chi}(c_j^+)$$
, thus $T^*(c_j^+) = \varepsilon I = \omega_{\chi}(c_j^+)I$.

COROLLARY 10. Let g be an α -regular element in the center Z(G). Then $T(g) = T^*(u_g) = \omega_{\chi}(u_g)I$. Conversely if $T(g) = \varepsilon I$ for some $\varepsilon \in F^*$ then $\varepsilon = \omega_{\chi}(u_g)$.

Proof. Since $\alpha(g,x) = \alpha(x,g)$ and T(g)T(x) = T(x)T(g) for any $x \in G$, we have $T(g) = \varepsilon I$ for some $\varepsilon \in F^*$. Taking trace, it follows $\chi(g) = \varepsilon \chi(1)$ and $\varepsilon = \frac{\chi(g)}{\chi(1)}$. Since $|\mathcal{C}_g| = 1$, $c_g^+ = u_g$ and $\varepsilon = \frac{\chi(g)}{\chi(1)} = \omega_{\chi}(u_g)$, thus $T(g) = \omega_{\chi}(u_g)I$. On the other hand if $T(g) = \varepsilon I$ for $\varepsilon \in F^*$ then $\chi(g) = \varepsilon \chi(1)$ and $\varepsilon = \frac{\chi(g)}{\chi(1)} = \omega_{\chi}(u_g)$.

We now have formulae for multiplications of ω_{χ} 's and of α -characters χ in Theorem 11, and of α -spherical functions in Theorem 12.

Theorem 11. Let χ be an irreducible α -character of G. Then

(i) $\omega_{\chi}(c_i^+)\omega_{\chi}(c_j^+) = \alpha(g_i,g_j)\sum_{m=1}^s a_{ijm} \ \omega_{\chi}(c_m^+)$, where a_{ijm} is the class algebra constant, i.e., the number of pairs (x,y) for $x \in \mathcal{C}_i$, $y \in \mathcal{C}_j$ with $xy \in \mathcal{C}_m$.

(ii)
$$\chi(g)\chi(x) = \frac{\chi(1)}{|G|}\alpha(g,x) \cdot \sum_{z \in G} \chi(gx^z) = \frac{\chi(1)}{|G|}\alpha(x,g) \cdot \sum_{z \in G} \chi(xg^z).$$

Proof. Keep the same notation C_j for α -regular class with representative g_j . Since $\omega_{\chi}(c_j^+)I = T^*(c_j^+) = \sum_{C_j} T(g_j)$ by Theorem 9, (i) follows immediately from

$$\omega_{\chi}(c_i^+)\omega_{\chi}(c_j^+)I = \sum_{C_i} \sum_{C_j} \alpha(g_i, g_j)T(g_i g_j)$$

$$= \sum_{m=1}^s \alpha(g_i, g_j)a_{ijm} \sum_{g_m \in \mathcal{C}_m} T(g_m)$$

$$= \alpha(g_i, g_j) \sum_{m=1}^s a_{ijm}T^*(c_m^+)$$

$$= \alpha(g_i, g_j) \sum_{m=1}^s a_{ijm}\omega_{\chi}(c_m^+)I.$$

Since χ is a class function, we have, for any g, x and $y \in G$,

$$\begin{split} \sum_{z \in G} \chi(gx^z) &= \sum_{z \in G} \chi((gx^z)^y) = \sum_{z \in G} \chi(g^y x^{yz}) = \sum_{t \in G} \chi(g^y x^t) \\ &= \sum_{z \in G} \chi(g^y x^z). \end{split}$$

Let $g = g_i \in \mathcal{C}_i$ and $x = g_j \in \mathcal{C}_j$ for some $1 \leq i, j \leq s$. Then

$$\sum_{z \in G} \chi(gx^z) = \frac{1}{|G|} \sum_{y \in G} \sum_{z \in G} \chi(g_i^y \cdot g_j^z)$$

$$= \frac{1}{|G|} \frac{|G|}{|C_i|} \frac{|G|}{|C_j|} \sum_{a_i \in C_i} \sum_{a_j \in C_j} \chi(a_i a_j)$$

$$= \frac{|G|}{|C_i||C_j|} \sum_{m=1}^s |C_m| a_{ijm} \chi(g_m)$$

$$= \frac{|G|}{|C_i||C_j|} \chi(1) \sum_{m=1}^s a_{ijm} \omega_{\chi}(c_m^+).$$

Therefore (ii) follows from (i) that

$$\frac{\chi(1)}{|G|}\alpha(g,x)\sum_{z\in G}\chi(gx^z) = \frac{\chi(1)\chi(1)}{|C_i||C_j|}\alpha(g_i,g_j)\sum_{m=1}^s a_{ijm}\omega_\chi(c_m^+)$$
$$= \frac{\chi(1)}{|C_i|}\frac{\chi(1)}{|C_j|}\omega_\chi(c_i^+)\omega_\chi(c_j^+)$$
$$= \chi(g)\chi(x).$$

Now for an arithmetic property of α -spherical functions, let $g, x \in G$. Then

$$\begin{split} &Y_{\chi\phi}(g)Y_{\chi\phi}(x)\\ &=\frac{1}{|H|^2}\sum_{v,k\in H}\alpha^{-1}(v,v^{-1})\alpha^{-1}(k,k^{-1})\alpha(v,g)\alpha(k,x)\\ &\quad\cdot \ \chi(vg)\chi(kx)\phi(k^{-1})\phi(v^{-1})\\ &=\frac{\phi(1)}{|H|^3}\sum_{v,k,h\in H}\alpha^{-1}(v,v^{-1})\alpha^{-1}(k,k^{-1})\alpha(v,g)\alpha(k,x)\alpha(k^{-1},v^{-1})\\ &\quad\cdot \ \chi(vg)\chi(kx)\phi(k^{-1}v^{-h}) \end{split}$$

due to Theorem 11 (ii). Because $\chi(g) = 0$ when g is not α -regular, we may assume $g, x \in G$ and $v, k, h \in H$ are all α -regular. If α is a normal 2-cocycle then ϕ is a class function so $\phi(k^{-1}v^{-h}) = \phi(v^{-h}k^{-1})$, thus we obtain

$$\begin{split} &Y_{\chi\phi}(g)Y_{\chi\phi}(x)\\ &=\frac{\phi(1)}{|H|^3}\sum_{v,k,h\in H}\alpha^{-1}(v,v^{-1})\alpha^{-1}(k,k^{-1})\alpha(v,g)\alpha(k,x)\alpha(k^{-1},v^{-1})\\ &\quad\cdot \chi(vg)\chi(kx)\phi(v^{-h}k^{-1})\\ &=\frac{\phi(1)}{|H|^3}\sum_{a,k,h\in H}\alpha^{-1}\big((k^{-1}a)^{h^{-1}},(a^{-1}k)^{h^{-1}}\big)\alpha^{-1}(k,k^{-1})\alpha\big((k^{-1}a)^{h^{-1}},g\big)\\ &\quad\cdot \alpha(k,x)\alpha\big(k^{-1},(a^{-1}k)^{h^{-1}}\big)\chi\big((k^{-1}a)^{h^{-1}}g\big)\chi(kx)\phi(a^{-1}) \end{split}$$

by substituting $v^{-h}k^{-1}=a^{-1}$ (so $v=(k^{-1}a)^{h^{-1}}$). But by Theorem 11 (ii), since

$$\begin{split} \chi \Big((k^{-1}a)^{h^{-1}} g \Big) \chi(kx) &= \chi(k^{-1}ag^h) \chi(xk) \\ &= \frac{\chi(1)}{|G|} \alpha(k^{-1}ag^h, xk) \sum_{y \in G} \chi \Big(k^{-1}ag^h(xk)^y \Big) \\ &= \frac{\chi(1)}{|G|} \alpha(k^{-1}ag^h, xk) \sum_{y \in G} \chi(ag^hyxy^{-k}), \end{split}$$

we have a multiplication formula of the spherical function $Y_{\chi\phi}$ that

$$(4) Y_{\chi\phi}(g)Y_{\chi\phi}(x) = \frac{\phi(1)}{|H|^3} \frac{\chi(1)}{|G|} \sum_{a,k,h \in H} \sum_{y \in G} \alpha^{-1} ((k^{-1}a)^{h^{-1}}, (a^{-1}k)^{h^{-1}}) \alpha^{-1}(k, k^{-1}) \cdot \alpha ((k^{-1}a)^{h^{-1}}, g) \alpha(k, x) \alpha (k^{-1}, (a^{-1}k)^{h^{-1}}) \cdot \alpha (k^{-1}ag^h, xk) \chi(ag^hyxy^{-k}) \phi(a^{-1}).$$

In particular if $\alpha=1$ then the (ordinary) spherical function $Y_{\chi\phi}$ satisfies

$$\begin{split} Y_{\chi\phi}(g)Y_{\chi\phi}(x) &= \frac{\phi(1)}{|H|^3} \frac{\chi(1)}{|G|} \sum_{a,k,h \in H} \sum_{y \in G} \chi(ag^h yxy^{-k}) \phi(a^{-1}) \\ &= \frac{\phi(1)}{|H|^2} \frac{\chi(1)}{|G|} \sum_{k} \sum_{h \in H} \sum_{y \in G} Y_{\chi\phi}(g^h yxy^{-k}), \end{split}$$

this is the result obtained by Gallagher in [5]. Moreover if G is abelian then

$$Y_{\chi\phi}(g)Y_{\chi\phi}(x) = \frac{\phi(1)}{|H|^2} \frac{\chi(1)}{|G|} \sum_{k,h \in H} \sum_{y \in G} Y_{\chi\phi}(gx) = Y_{\chi\phi}(gx).$$

Prior to this, it was proved that $Y_{\chi\phi}(g)Y_{\chi\phi}(x)=\frac{1}{|H|}\sum_{h\in H}Y_{\chi\phi}(gx^h)$ if $c_{\chi\phi}=1$ in [19, Corollary 1] by using more representation-theoretic interpretations.

Now in order to have a simple formula for product of projective spherical functions, we will assume that G is an abelian group in Theorem 12. As mentioned before, the structure of Schur algebra over abelian group has wide application in combinatorics, graph and design theory.

THEOREM 12. If G is abelian then the multiplication formula of $Y_{\chi\phi}$ is

$$Y_{\chi\phi}(g)Y_{\chi\phi}(x) = \chi(1)\phi(1)\alpha(g,x)Y_{\chi\phi}(gx)$$
 for any $g, x \in G$.

Proof. We first notice that $\alpha \in Z^2(G, F^*)$ is normal because G is abelian. In fact, if u is any α -regular element and v is any element in G, then $v \in C_G(u)$ and $\alpha(u, v) = \alpha(v, u) = \alpha(v, u^v)$. Thus from (4), we have

$$\begin{split} &Y_{\chi\phi}(g)Y_{\chi\phi}(x)\\ &=\frac{\phi(1)}{|H|^3}\frac{\chi(1)}{|G|}\sum_{a,k,h\in H}\sum_{y\in G}\alpha^{-1}(k^{-1}a,a^{-1}k)\alpha^{-1}(k,k^{-1})\alpha(k^{-1}a,g)\alpha(k,x)\\ &\cdot \alpha(k^{-1},a^{-1}k)\alpha(k^{-1}ag,xk)\cdot\alpha(a,a^{-1})\alpha^{-1}(a,gx)\\ &\cdot \alpha^{-1}(a,a^{-1})\alpha(a,gx)\chi(agx)\phi(a^{-1})\\ &=\frac{\phi(1)}{|H|^3}\frac{\chi(1)}{|G|}\sum_{a,k,h\in H}\sum_{y\in G}\Gamma\cdot\alpha^{-1}(a,a^{-1})\alpha(a,gx)\chi(agx)\phi(a^{-1}), \end{split}$$

where

$$\Gamma = \alpha^{-1}(k^{-1}a, a^{-1}k)\alpha^{-1}(k, k^{-1})\alpha(k^{-1}a, g)\alpha(k, x)\alpha(k^{-1}, a^{-1}k)$$
$$\cdot \alpha(k^{-1}ag, xk)\alpha(a, a^{-1})\alpha^{-1}(a, gx).$$

We claim that Γ equals $\alpha(g,x)$. If then, we have our desired formula that

$$\begin{split} &Y_{\chi\phi}(g)Y_{\chi\phi}(x)\\ &=\frac{\phi(1)}{|H|^3}\frac{\chi(1)}{|G|}\sum_{a,k,h\in H}\sum_{y\in G}\alpha(g,x)\cdot\alpha^{-1}(a,a^{-1})\alpha(a,gx)\chi(agx)\phi(a^{-1})\\ &=\phi(1)\chi(1)\frac{\alpha(g,x)}{|H|}\sum_{a\in H}\alpha^{-1}(a,a^{-1})\alpha(a,gx)\chi(agx)\phi(a^{-1})\\ &=\chi(1)\phi(1)\alpha(g,x)Y_{\chi\phi}(gx). \end{split}$$

To prove the claim, we use the equalities

$$\alpha^{-1}(k^{-1}a, a^{-1}k) = \alpha(k^{-1}, a)\alpha(a^{-1}, k)\alpha^{-1}(a, a^{-1})\alpha^{-1}(k^{-1}, k)$$

and

$$\alpha(k^{-1}, a^{-1}k) = \alpha(k^{-1}, k)\alpha^{-1}(a^{-1}, k)$$

Then

$$\Gamma = \alpha(k^{-1}, a)\alpha(a^{-1}, k)\alpha^{-1}(a, a^{-1})\alpha^{-1}(k^{-1}, k) \cdot \alpha^{-1}(k, k^{-1})\alpha(k^{-1}a, g)$$

$$\cdot \alpha(k, x) \cdot \alpha(k^{-1}, k)\alpha^{-1}(a^{-1}, k)\alpha(k^{-1}ag, xk)\alpha(a, a^{-1})\alpha^{-1}(a, gx)$$

$$= \alpha(k^{-1}, a)\alpha^{-1}(k, k^{-1})\alpha(k^{-1}a, g)\alpha(k, x)\alpha(k^{-1}ag, xk)\alpha^{-1}(a, gx).$$

Now by substituting some values of α in the above equation by

$$\alpha(k^{-1}a, g)\alpha(k^{-1}ag, xk) = \alpha(k^{-1}a, gxk)\alpha(g, xk),$$

and

$$\alpha^{-1}(a, gx) = \alpha^{-1}(ag, x)\alpha^{-1}(a, g)\alpha(g, x),$$

we obtain that

$$\Gamma = \alpha(k^{-1}, a)\alpha^{-1}(k, k^{-1})\alpha(k^{-1}a, gxk)\alpha(g, xk)$$
$$\cdot \alpha(k, x) \cdot \alpha^{-1}(ag, x)\alpha^{-1}(a, g)\alpha(g, x).$$

Due to easy computations that

$$\alpha(k^{-1},a)\alpha^{-1}(k,k^{-1})\alpha(k^{-1}a,gxk)\alpha(g,x)=\alpha^{-1}(gx,k)\alpha(ag,x)\alpha(a,g),$$
 and

$$\alpha(g, xk)\alpha(k, x) = \alpha(gx, k)\alpha(g, x),$$

the claim follows immediately that

$$\Gamma = \alpha^{-1}(gx, k)\alpha(ag, x)\alpha(a, g) \cdot \alpha(gx, k)\alpha(g, x) \cdot \alpha^{-1}(ag, x)\alpha^{-1}(a, g)$$
$$= \alpha(g, x).$$

COROLLARY 13. Let H = Z(G), and $g, x \in G$ satisfying $\alpha(a, gx) = \alpha(a, gx^y)$ for any $a \in H$, $y \in G$. Then $Y_{\chi\phi}(g)Y_{\chi\phi}(x) = \chi(1)\phi(1)\alpha(g, x)\frac{1}{|G|}\sum_{y \in G} Y_{\chi\phi}(gx^y)$.

Proof. Since H=Z(G), the formula in (4) shows that $Y_{\chi\phi}(g)Y_{\chi\phi}(x)$ equals

$$\begin{split} &= \frac{\phi(1)}{|H|^3} \frac{\chi(1)}{|G|} \sum_{a,k,h \in H} \sum_{y \in G} \alpha^{-1}(k^{-1}a,a^{-1}k) \alpha^{-1}(k,k^{-1}) \\ & \cdot \alpha(k^{-1}a,g) \alpha(k,x) \alpha(k^{-1},a^{-1}k) \\ & \cdot \alpha(k^{-1}ag,xk) \cdot \alpha(a,a^{-1}) \alpha^{-1}(a,gx^y) \\ & \cdot \alpha^{-1}(a,a^{-1}) \alpha(a,gx^y) \chi(agx^y) \phi(a^{-1}) \\ &= \frac{\phi(1)}{|H|^3} \frac{\chi(1)}{|G|} \sum_{a,k,h \in H} \sum_{y \in G} \Gamma \cdot \alpha^{-1}(a,a^{-1}) \alpha(a,gx^y) \chi(agx^y) \phi(a^{-1}), \end{split}$$

where
$$\Gamma = \alpha^{-1}(k^{-1}a, a^{-1}k)\alpha^{-1}(k, k^{-1})\alpha(k^{-1}a, g)\alpha(k, x)\alpha(k^{-1}, a^{-1}k)$$

 $\cdot \alpha(k^{-1}ag, xk)\alpha(a, a^{-1})\alpha^{-1}(a, gx^y).$

It is easy to see $\Gamma = \alpha(a, gx)\alpha(g, x)\alpha^{-1}(a, gx^y)\alpha(k, x)\alpha^{-1}(x, k)$ by Lemma 2. But since $k \in H = Z(G)$, $\alpha(k, x) = \alpha(x, k)$. And since $\alpha(a, gx) = \alpha(a, gx^y)$, it follows that $\Gamma = \alpha(g, x)$ and

$$Y_{\chi\phi}(g)Y_{\chi\phi}(x) = \chi(1)\phi(1)\alpha(g,x)\frac{1}{|G|}\sum_{y\in G}Y_{\chi\phi}(gx^y).$$

5. Subclass algebras of twisted group algebra

In this section, we investigate how α -spherical functions on G work over $Z(F^{\alpha}G)$ and over $C_{F^{\alpha}G}(F^{\alpha}H)$, where both $Z(F^{\alpha}G)$ and $C_{F^{\alpha}G}(F^{\alpha}H)$ are projective Schur algebras in $F^{\alpha}G$. By keeping the notations M_j $(j=1,\ldots,s)$, χ_j , \mathcal{C}_j and $c_j^+ = \sum_{x \in \mathcal{C}_j} u_x$ as before, let f_j be the nonzero primitive central idempotent of $F^{\alpha}G$ such that each M_j lies over f_j (i.e., $M_j f_j \neq 0$), and let $\{g_j\}$ be a set of representatives of \mathcal{C}_j . We assume that $\alpha \in Z^2(G, F^*)$ is normal.

LEMMA 14. Each f_j forms $\frac{\chi_j(1)}{|G|} \sum_{k=1}^s \alpha^{-1}(g_k, g_k^{-1}) \chi_j(g_k^{-1}) c_k^+$ in $Z(F^{\alpha}G)$.

Proof. The idempotent f_j equals $\frac{\chi_j(1)}{|G|} \sum_{g \in G_0} \alpha^{-1}(g, g^{-1}) \chi_j(g^{-1}) u_g$ ([10, vol. 3, (1.11.1)]). Since $\chi_j(g) = \chi_j(g_k)$ and $\alpha(g, g^{-1}) = \alpha(g_k, g_k^{-1})$ for all $g \in \mathcal{C}_k$, we have

$$f_{j} = \frac{\chi_{j}(1)}{|G|} \sum_{k=1}^{s} \sum_{g_{k} \in C_{k}} \alpha^{-1}(g_{k}, g_{k}^{-1}) \chi_{j}(g_{k}^{-1}) u_{g_{k}}$$
$$= \frac{\chi_{j}(1)}{|G|} \sum_{k=1}^{s} \alpha^{-1}(g_{k}, g_{k}^{-1}) \chi_{j}(g_{k}^{-1}) c_{k}^{+},$$

and this belongs to $Z(F^{\alpha}G)$ because c_k^+ constitutes a basis of $Z(F^{\alpha}G)$.

THEOREM 15. Over $Z(F^{\alpha}G)$, all $Z(F^{\alpha}G)f_j$ are irreducible modules with dimension 1, and each ω_{χ_j} is a linearly independent irreducible character corresponding to the simple module $Z(F^{\alpha}G)f_j$. In particular, $\omega_{\chi_j}(f_l) = \delta_{jl}$.

Proof. Since $F^{\alpha}G$ is decomposed into $F^{\alpha}Gf_1 \oplus \cdots \oplus F^{\alpha}Gf_s$, we have

$$Z(F^{\alpha}G) = Z(F^{\alpha}G)f_1 \oplus \cdots \oplus Z(F^{\alpha}G)f_s = \bigoplus_{j=1}^s Z(F^{\alpha}G)f_j,$$

where $Z(F^{\alpha}G)f_j$ is a simple two sided ideal of $Z(F^{\alpha}G)$. Comparing dimensions, we have $s = \dim Z(F^{\alpha}G) = \sum_{j=1}^{s} \dim Z(F^{\alpha}G)f_j$, so $\dim Z(F^{\alpha}G)f_j = 1$ for all j.

Since ω_{χ_j} is defined on $Z(F^{\alpha}G)$, ω_{χ_j} maps f_l to

$$\omega_{\chi_{j}}(f_{l}) = \frac{\chi_{l}(1)}{|G|} \sum_{k=1}^{s} \alpha^{-1}(g_{k}, g_{k}^{-1}) \chi_{l}(g_{k}^{-1}) |C_{k}| \frac{\chi_{j}(g_{k})}{\chi_{j}(1)}$$

$$= \frac{\chi_{l}(1)}{\chi_{j}(1)|G|} \sum_{g \in G_{0}} \alpha^{-1}(g, g^{-1}) \chi_{l}(g^{-1}) \chi_{j}(g)$$

$$= \frac{\chi_{l}(1)}{\chi_{j}(1)} \langle \chi_{j}, \chi_{l} \rangle_{\alpha, G}$$

$$= \frac{\chi_{l}(1)}{\chi_{j}(1)} \delta_{jl}$$

$$= \delta_{jl}.$$

Thus each ω_{χ_j} is a linearly independent irreducible character of $Z(F^{\alpha}G)$ corresponding to $Z(F^{\alpha}G)f_j$.

Similar to the symbols M_j , f_j and χ_j over $F^{\alpha}G$, let N_i be an irreducible $F^{\alpha}H$ -module which affords an α -character ϕ_i , and e_i be a primitive central idempotent of $F^{\alpha}H$ with $N_ie_i \neq 0$ for $i = 1, \ldots, t$. Then $F^{\alpha}G \cong \bigoplus \sum_{j=1}^{s} \operatorname{End}_F(M_j)$ and $F^{\alpha}H \cong \bigoplus \sum_{i=1}^{t} \operatorname{End}_F(N_i)$. Each M_j , viewed as a left $F^{\alpha}H$ -module, is uniquely written by $M_j|_{F^{\alpha}H} = \bigoplus_{i=1}^{t} c_{ij}N_i$, where $c_{ij} = c_{\chi_j\phi_i}$ is the one satisfying $\chi_j|_H = \sum_{i=1}^{t} c_{ij}\phi_i$.

THEOREM 16. Over $C_{F^{\alpha}G}(F^{\alpha}H)$, all e_iM_j (i=1,..,t; j=1,..,s) are irreducible modules with dimension c_{ij} .

Proof. Each e_iM_j is an irreducible $C_{F^{\alpha}G}(F^{\alpha}H)$ -module by defining $q(e_im)=e_i(qm)\in e_iM_j$ for $q\in C_{F^{\alpha}G}(F^{\alpha}H),\ m\in M_j$. The fact $\dim(e_iM_j)=c_{ij}$ was proved in [9, Corollary 2.2] when $\alpha=1$, and the proof can be modified to twisted group algebra. Indeed, $\operatorname{Hom}_{F^{\alpha}H}(F^{\alpha}He_i,M_j)$ is an $C_{F^{\alpha}G}(F^{\alpha}H)$ -module and is isomorphic to e_iM_j under ψ to $\psi(e_i)$ for any $\psi\in\operatorname{Hom}_{F^{\alpha}H}(F^{\alpha}He_i,M_j)$. Thus

$$e_i M_j \cong \operatorname{Hom}_{F^{\alpha}H}(F^{\alpha}He_i, M_j) \cong \operatorname{Hom}_{F^{\alpha}H}(N_i, \bigoplus_{k=1}^t c_{kj}N_k)$$

= $c_{ij}\operatorname{Hom}_{F^{\alpha}H}(N_i, N_i)$,

so that
$$\dim(e_i M_j) = \dim(c_{ij} \operatorname{Hom}_{F^{\alpha} H}(N_i, N_i)) = c_{ij}.$$

Let \mathcal{P} be the set of α -regular classes \mathcal{D}_h in H with class sum $d_h^+ = \sum_{a \in \mathcal{D}_h} u_a$. And let \mathcal{Q} be the set of α -H-regular classes \mathcal{E}_y in G with $e_y^+ = \sum_{x \in \mathcal{E}_y} u_x$. Let S be an F-algebra generated by all α -H-regular class sums e_y^+ , i.e., $S = \bigoplus_{y \in G_0} Fe_y^+$. Since \mathcal{Q} is a partition of G with $\mathcal{E}_y^{-1} = \mathcal{E}_{y^{-1}}$ and $\mathcal{E}_1 = \{1\}$, S is a projective Schur algebra over G in $F^{\alpha}G$. Moreover since e_y^+ constitutes a basis of $C_{F^{\alpha}G}(F^{\alpha}H)$ (see [10, v.2, (6.2.3)]), S is equal to $C_{F^{\alpha}G}(F^{\alpha}H)$ whose dimension is the number of α -H-regular classes in G.

Let ψ_{ij} (i = 1, ..., t; j = 1, ..., s) be irreducible characters that correspond to S-modules $e_i M_j$ of dimension c_{ij} (Theorem 16), so deg $\psi_{ij} = c_{ij} = \dim(e_i M_j)$.

THEOREM 17. Let Y_{ij}^* be the F-linearly extended map of $Y_{ij} = Y_{\chi_j \phi_i}$ to $F^{\alpha}G$ where $\phi_i \subset \chi_j|_H$. Then $Y_{ij}^*|_{Z(F^{\alpha}H)} = c_{ij}\omega_{\phi_i} = \psi_{ij}|_{Z(F^{\alpha}H)}$. Thus over $Z(F^{\alpha}H)$, Y_{ij}^* is a character corresponding to e_iM_j .

Proof. Let $b_g \in F^*$. The extended map $Y_{ij}^* : F^{\alpha}G \to F$ is determined by

$$Y_{ij}^*(\sum_{g \in G} b_g u_g) = \sum_{g \in G} b_g Y_{ij}(g)$$

$$= \sum_{g \in G, h \in H} b_g \frac{1}{|H|} \alpha^{-1}(h, h^{-1}) \alpha(h, g) \chi_j(hg) \phi_i(h^{-1}).$$

Since the restriction $\psi_{ij}|_{Z(F^{\alpha}H)}$ can be written as a linear combination of irreducible characters ω_{ϕ_i} on $Z(F^{\alpha}H)$ (Theorem 15), we may write

$$\psi_{ij}|_{Z(F^{\alpha}H)} = \sum_{k=1}^{t} b_{ijk} \ \omega_{\phi_k} \text{ for some } b_{ijk} \ge 0.$$

In terms of S-module $e_i M_j$ and of $Z(F^{\alpha}H)$ -module $Z(F^{\alpha}H)e_k$ that correspond to ψ_{ij} and ω_{ϕ_k} respectively (Theorems 15, 16), the equality can be interpreted by

$$e_i M_j|_{Z(F^{\alpha}H)} = \bigoplus_{k=1}^t b_{ijk} Z(F^{\alpha}H) e_k.$$

By multiplying e_i to both sides of the above equation, it follows that

$$e_i M_j|_{Z(F^{\alpha}H)} = e_i e_i M_j|_{Z(F^{\alpha}H)} = \bigoplus_{k=1}^t b_{ijk} Z(F^{\alpha}H) e_i e_k = b_{iji} Z(F^{\alpha}H) e_i.$$

Comparing dimensions of both sides, we have $b_{iji}=c_{ij}$ and $b_{ijk}=0$ for $i\neq k$, for $\dim(Z(F^{\alpha}H)e_i)=1$. Thus $\psi_{ij}|_{Z(F^{\alpha}H)}=c_{ij}\omega_{\phi_i}$ and $e_iM_j|_{Z(F^{\alpha}H)}=c_{ij}Z(F^{\alpha}H)e_i$.

On the other hand, since $d_h^+ = \sum_{a \in \mathcal{D}_h} u_a$ forms a basis of $Z(F^{\alpha}H)$, $Z(F^{\alpha}H)$ is a projective Schur subalgebra whose dimension is the number of α -regular classes in H. Then since Y_{ij} is an H-class function (Theorem 7), it follows that

$$\begin{split} &Y_{ij}^*(d_h^+) \\ &= |\mathcal{D}_h| Y_{ij}(h) \\ &= \frac{|\mathcal{D}_h|}{|H|} \sum_{a \in H} \alpha^{-1}(a, a^{-1}) \alpha(a, h) \chi_j(ah) \phi_i(a^{-1}) \\ &= \frac{|\mathcal{D}_h|}{|H|} \sum_{a \in H} \alpha^{-1}(a, a^{-1}) \alpha(a, h) \Big(c_{ij} \phi_i(ah) + \sum_{l \neq i} c_{lj} \phi_l(ah) \Big) \phi_i(a^{-1}) \\ &= \frac{|\mathcal{D}_h|}{|H|} \sum_{a \in H} \alpha^{-1}(a, a^{-1}) \alpha(a, h) c_{ij} \phi_i(ah) \phi_i(a^{-1}) = c_{ij} |\mathcal{D}_h| \frac{\phi_i(h)}{\phi_i(1)} \\ &= c_{ij} \omega_{\phi_i}(d_h^+), \end{split}$$

where the fourth equality is due to the orthogonality relation in (2). \Box

We observe $\deg \omega_{\phi_i} = 1$, because $c_{ij} = \deg \psi_{ij} = c_{ij} \deg \omega_{\phi_i}$. When $\alpha = 1$, the equality $\psi_{ij}|_{Z(F^{\alpha}H)} = c_{ij}\omega_{\phi_i}$ was proved in [9, Theorem 3.1]. Let $S = C_{F^{\alpha}G}(F^{\alpha}H)$. For the projective Schur subalgebra $Z(F^{\alpha}H)$ of S, an irreducible character ω_{ϕ_i} was defined over $Z(F^{\alpha}H)$ in Theorem 15 that $\omega_{\phi_i}(d_h^+) = |\mathcal{D}_h| \frac{\phi_i(h)}{\phi_i(1)}$ for $d_h^+ = \sum_{a \in \mathcal{D}_h} u_a$. And its induced character $\omega_{\phi_i}^S$ on S is defined in the following way. First we let

$$\zeta_S: S o S, \quad \zeta_S(z) = \sum_{\mathcal{E}_y \in \mathcal{Q}} rac{\mathrm{lcm}_{y \in G} |\mathcal{E}_y|}{|\mathcal{E}_y|} e_y^+ z e_{y^{-1}}^+ \quad ext{for} \ \ z \in S,$$

where Q consists of α -H-regular classes \mathcal{E}_y in G with class sum e_y^+ ([15, Section 1]). Similarly, let $\zeta_{Z(F^{\alpha}H)}: Z(F^{\alpha}H) \to Z(F^{\alpha}H)$ be defined in the same manner as is determined ζ_S . Let $d_0 = \zeta_{Z(F^{\alpha}H)}(d_1^+)$. Then the map $\omega_{\phi_i}^S$ is constructed by

$$\omega_{\phi_i}^S : S \to F^*, \quad \omega_{\phi_i}^S = \frac{\operatorname{lcm}_{h \in H} |\mathcal{D}_h|}{\operatorname{lcm}_{y \in G} |\mathcal{E}_y|} \frac{1}{\omega_{\phi_i}(d_0)} \widetilde{\omega}_{\phi_i} \cdot \zeta_S,$$

where $\widetilde{\omega}_{\phi_i}: S \to F^*$ is the extension of ω_{ϕ_i} (i.e., for any $z \in S$, $\widetilde{\omega}_{\phi_i}(z) = \omega_{\phi_i}(z)$ if z is a class sum in \mathcal{P} and $\widetilde{\omega}_{\phi_i} = 0$ otherwise) (see [15, Section 3]).

THEOREM 18. If $\omega_{\phi_i}^S$ on S is irreducible then $\widetilde{\omega}_{\phi_i} = Y_{ij}^*|_S$ for some j.

Proof. Since $\psi_{ij}|_{Z(F^{\alpha}H)} = c_{ij}\omega_{\phi_i}$ by Theorem 17, the reciprocity theorem ([15, Satz 9] or [9, Theorem 3.1]) shows that $\omega_{\phi_i}^S = \sum_{j=1}^s c_{ij}\psi_{ij}$ for all $1 \leq i \leq t$.

Since $\omega_{\phi_i}^S$ is irreducible, there is $1 \leq k \leq s$ such that $c_{ik} = 1$ and $c_{il} = 0$ for all $l \neq k$. Moreover we can observe that each $\mathcal{E}_y \in \mathcal{Q}$ is contained in $\mathcal{D}_a \in \mathcal{P}$ for some $a \in H$, where \mathcal{P} [resp. \mathcal{Q}] means the set of all α -regular classes \mathcal{D}_h in H [resp. α -H-regular classes \mathcal{E}_g in G] with class sum d_h^+ [resp. e_g^+]. In fact, we suppose contrary that \mathcal{E}_y $(y \in G)$ is not contained in any $\mathcal{D}_a \in \mathcal{P}$. Then $\mathcal{E}_y \cap H = \emptyset$, otherwise if $b \in \mathcal{E}_y \cap H$ then $\mathcal{E}_y = \mathcal{E}_b = \{cbc^{-1}|c \in H\}$ might be a conjugacy class \mathcal{D}_b in H, which is a contradiction. Due to [9, Proposition 3.4], it follows that $\sum_l \chi_l(1)\psi_{il}(e_y^+) = 0$, where the sum is taken over all l such that $c_{il} \neq 0$. But since $c_{ik} = 1$ and $c_{il} = 0$ for all $l \neq k$, we have $0 = \chi_k(1)\psi_{ik}(e_y^+)$, so $\psi_{ik}(e_y^+) = 0$ for all $e_y^+ \in S$. This yields a contradiction that ψ_{ik} is an irreducible character of S which is generated by all e_y^+ .

Thus, for each $y \in G$, there is $a \in H$ such that $\mathcal{E}_y \subseteq \mathcal{D}_a$ in \mathcal{P} . So we have

$$\widetilde{\omega}_{\phi_i}(e_y^+) = \omega_{\phi_i}(c_a^+) \frac{|\mathcal{E}_y|}{|\mathcal{D}_a|} = |\mathcal{D}_a| \frac{\phi_i(a)}{\phi_i(1)} \frac{|\mathcal{E}_y|}{|\mathcal{D}_a|} = |\mathcal{E}_y| \frac{\phi_i(a)}{\phi_i(1)} = |\mathcal{E}_y| \frac{\phi_i(y)}{\phi_i(1)}$$

(refer to [9, (1.5)] or [15, Section 3]), because y and a are H-conjugate. Moreover since y and hy (for any $h \in H$) belong to H, we obtain

$$\chi_k(hy) = \chi_k|_H(hy) = \sum_{i=1}^t c_{ik}\phi_i(hy) = c_{ik}\phi_i(hy) = \phi_i(hy).$$

But since Y_{ik} is an H-class function, it follows that

$$\begin{split} Y_{ik}^*|_S(e_y^+) &= Y_{ik}^*(\sum_{x \in \mathcal{E}_y} u_x) = |\mathcal{E}_y|_{Yik}(y) \\ &= \frac{|\mathcal{E}_y|}{|H|} \sum_{h \in H} \alpha^{-1}(h, h^{-1})\alpha(h, y) \chi_k(hy) \phi_i(h^{-1}) \\ &= \frac{|\mathcal{E}_y|}{|H|} \sum_{h \in H} \alpha^{-1}(h, h^{-1})\alpha(h, y) \phi_i(hy) \phi_i(h^{-1}) \\ &= |\mathcal{E}_y| \frac{\phi_i(y)}{\phi_i(1)} \end{split}$$

by (2). Hence this proves $Y_{ij}^*|_S = \widetilde{\omega}_{\phi_i}$.

It would be nice if we know any explicit relations of Y_{ij}^* on S to $\omega_{\phi_i}^S$.

THEOREM 19. If $c_{ij} \neq 0$, then $e_i f_j = \frac{\phi_i(1)\chi_j(1)}{|G|} \sum_{g \in G_0} \alpha(g, g^{-1}) Y_{ij}$ $(g^{-1})u_g = f_j e_i$ is a distinct block idempotent of S.

Proof. It is easy to see that

$$\begin{split} &\frac{|G|}{\phi_i(1)\chi_j(1)}f_je_i\\ &=\frac{1}{|H|}\sum_{x\in G}\alpha^{-1}(x,x^{-1})\chi_j(x^{-1})u_x\sum_{h\in H}\alpha^{-1}(h,h^{-1})\phi_i(h^{-1})u_h\\ &=\sum_{x\in G}\frac{1}{|H|}\sum_{h\in H}\alpha^{-1}(x,x^{-1})\alpha^{-1}(h,h^{-1})\alpha(x,h)\chi_j(x^{-1})\phi_i(h^{-1})u_{xh} \end{split}$$

$$\begin{split} &= \sum_{g \in G} \frac{1}{|H|} \sum_{h \in H} \alpha^{-1}(gh^{-1}, hg^{-1}) \alpha^{-1}(h, h^{-1}) \alpha(gh^{-1}, h) \chi_j(hg^{-1}) \phi_i(h^{-1}) u_g \\ &= \sum_{g \in G} \alpha^{-1}(g, g^{-1}) \frac{1}{|H|} \sum_{h \in H} \alpha^{-1}(h, h^{-1}) \alpha(h, g^{-1}) \chi_j(hg^{-1}) \phi_i(h^{-1}) u_g \\ &= \sum_{g \in G} \alpha^{-1}(g, g^{-1}) Y_{\chi \phi}(g^{-1}) u_g. \end{split}$$

Since $Z(F^{\alpha}H)$ and $Z(F^{\alpha}G)$ are contained in Z(S), the central idempotents e_i and f_j belong to Z(S) and e_if_j is a central primitive orthogonal idempotent of S.

References

- [1] C. Apostolopoulos, M. Van den Bergh, and F. Van Oystaeyen, On Schur rings of group rings of finite groups, Comm. Algebra 20 (1992), no. 7, 2139–2152.
- [2] E. Bannai and T. Ito, *Algebraic combinatorics I*, Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA. 1984.
- [3] L. Delvaux and E. Nauwelaerts, Applications of Frobenius algebras to representation theory of Schur algebras, J. Algebra 199 (1998), no. 2, 591-617.
- [4] W. Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967.
- [5] P. X. Gallagher, Functional equation for spherical functions on finite groups, Math. Z. 141 (1975), 77–81.
- [6] I. M. Gel'fand, Spherical functions in symmetric Riemann spaces, Doklady Akad. Nauk SSSR 70 (1950), 5–8.
- [7] R. Godement, A theory of spherical functions, I. Trans. Amer. Math. Soc. 73 (1952), 496–556.
- [8] I. M. Isaacs, Character theory of finite groups, Dover Publications, Inc., New York, 1994.
- [9] J. Karlof, The subclass algebra associated with a finite group and subgroup, Trans. Amer. Math. Soc. 207 (1975), 329-341.
- [10] G. Karpilovsky, Group representations, Vol.2, Vol.3, North-Holland, 1993, 1994.
- [11] K. H. Leung and S. H. Man, On Schur rings over cyclic groups, Israel J. Math. 106 (1998), no. 1, 251-267.
- [12] _____, On Schur rings over cyclic groups II, J. Algebra 183 (1996), no. 2, 273-285.
- [13] S. L. Ma, On association schemes, Schur rings, strongly regular graphs and partial difference sets, Ars Combin. 27 (1989), 211–220.
- [14] M. Muzychuk, The structure of rational Schur rings over cyclic groups, European J. Combin 14 (1993), no. 5, 479–490.
- [15] F. Roesler, Darstellungstheorie von Schur-Algebren, Math. Z. 125 (1972), 32-58.
- [16] I. Schur, Sur Theorie der einfact transitiven Permutationsgruppen, Sitzungsber, Preues. Akad. Wiss. Berlin, Phys.-Math. Kl. (1933), 589-623.
- [17] O. Tamaschke, On the theory of Schur-rings, Ann. Mat. Pura Appl. (4) 81 (1969), no. 4. 1–43.

- [18] _____, On Schur-rings which define a proper character theory on finite groups, Math. Z. 117 (1970), 340–360.
- [19] D. Travis, Spherical functions on finite groups, J. Algebra 29 (1974), 65-76.
- [20] H. Wielandt, Zur Theorie der einfach transitiven Permutationsgruppen II, Math. Z. 52 (1949), 384-393.
- [21] E. P. Wigner, On representations of certain finite groups, Amer. J. Math. 63 (1941), 57–63.

DEPARTMENT OF MATHEMATICS, HAN NAM UNIVERSITY, DAEJEON 306-791, KOREA E-mail: emc@hannam.ac.kr