Lessons from the Sea : Genome Sequence of an Algicidal Marine Bacterium Hahella chehuensis

적조 살상 해양 미생물 Hahella chejuensis의 유전체 구조

  • Jeong Hae-Young (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yoon Sung-Ho (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee Hong-Kum (Korea Polar Research Institute, Korea Ocean Research and Development (KORDI)) ;
  • Oh Tae-Kwang (21C Frontier Microbial Genomics and Applications Center, KRIBB) ;
  • Kim Ji-Hyun (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 정해영 (한국생명공학연구원 시스템미생물연구센터) ;
  • 윤성호 (한국생명공학연구원 시스템미생물연구센터) ;
  • 이홍금 (한국해양연구원 부설 극지연구소) ;
  • 오태광 (21C프론티어 미생물유전체활용기술개발사업단) ;
  • 김지현 (한국생명공학연구원 시스템미생물연구센터)
  • Published : 2006.03.01

Abstract

Harmful algal blooms (HABs or red tides), caused by uncontrolled proliferation of marine phytoplankton, impose a severe environmental problem and occasionally threaten even public health. We sequenced the genome of an EPS-producing marine bacterium Hahella chejuensis that produces a red pigment with the lytic activity against red-tide dinoflagellates at parts per billion level. H. chejuensis is the first sequenced species among algicidal bacteria as well as in the order Oceanospirillales. Sequence analysis indicated a distant relationship to the Pseudomonas group. Its 7.2-megabase genome encodes basic metabolic functions and a large number of proteins involved in regulation or transport. One of the prominent features of the H. chejuensis genome is a multitude of genes of functional equivalence or of possible foreign origin. A significant proportion (${\sim}23%$) of the genome appears to be of foreign origin, i.e. genomic islands, which encode genes for biosynthesis of exopolysaccharides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigment production. Molecular structure of the algicidal pigment was determined to be prodigiosin by LC-ESI-MS/MS and NMR analyses. The genomics-based research on H. chejuensis opens a new possibility for controlling algal blooms by exploiting biotic interactions in the natural environment and provides a model in marine bioprospecting through genome research.

Keywords

References

  1. Sellner, K. G and G J. Doucette. 2003. Harmful algal blooms: causes, impacts and detection. J Ind. Microbial. Biotechnol. 30: 383-406 https://doi.org/10.1007/s10295-003-0074-9
  2. Lam, C. W. Y. and K. C. Ho. 1989. Red tides in Tolo Harbor, Hong Kong, pp. 49-50. In T. Okaichi, D. M. Anderson, and T. Nemeto (eds.), Red Tides: Biology, Environmental Science and Toxicology, Elsevier, New York
  3. Morris Jr., J. G. 1999. Harmful algal blooms: an emerging public health problem with possible links to human stress on the environment. Ann. Rev. Energy. Environ. 24: 367-390 https://doi.org/10.1146/annurev.energy.24.1.367
  4. Lee, H. K., J. Chun, E. Y. Moon, S. -H. Ko, D. -So Lee, H. S. Lee, and K. S. Bae. 2001. Hahella chejuensis gen, nov., sp. nov., an extracellular-polysaccharide-producing marine bacterium. Int. J. Syst. Evol. Microbiol. 51: 661-666 https://doi.org/10.1099/00207713-51-2-661
  5. Yim J. H., S. J. Kim, S. H. Aan, and H. K. Lee. 2004. Physicochemical and rheological properties of a novel emulsifier, EPS-R, produced by the marine bacterium Hahella chejuensis. Biotechnol. Bioprocess. Eng. 9: 405-413 https://doi.org/10.1007/BF02933066
  6. Cerdefio, A. M., M. J. Bibb, and C. L. Challis. 2001. Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanism for chain initiation and termination in modular multienzymes. Chern. BioI. 8: 817-829
  7. Harris, A. K. P., N. R. Williamson, H. Slater, A. Cox, S. Abbasi, I. Foulds et ai. 2004. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150: 3547-3560 https://doi.org/10.1099/mic.0.27222-0
  8. Mayali, X. and F. Azam. 2004. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51: 139-144 https://doi.org/10.1111/j.1550-7408.2004.tb00538.x
  9. Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959-964 https://doi.org/10.1038/35023079
  10. Brown, J. R. 2003. Ancient horizontal gene tnmsfer. Nature Reviews-Genetics 4: 121-132 https://doi.org/10.1038/nrg1000
  11. Yoon, S. H., C. -Q Hur, H. -Y. Kang, Y. H. Kim, T. K. Oh, and J. F. Kim. 2005. A computational approacth for identifying pathogenecity islands in prokaryotic genomes. BMC Bioinfo. 6: 184 https://doi.org/10.1186/1471-2105-6-184
  12. Jeong, H., J. H. Yim, C. Lee, S. -H. Choi, Y. K. Park, S. H, Yoon et al. 2005. Genomic blueprint of Hahella chejuensis, a marine microbe prodicing an algicidal agent. Nucl. Acids Res. 33: 7066-7073 https://doi.org/10.1093/nar/gki1016