Bacillus cereus D-3로부터 항고지혈증 HMG-CoA Reductase 저해제의 생산

Production of an Antihyperlipemial HMG-CoA Reductase Inhibitor from Bacillus cereus D-3

  • 이대형 (배재대학교 생명유전공학과) ;
  • 이재원 (배재대학교 생명유전공학과) ;
  • 정재홍 (충남농업테크노파크 벤처농업육성팀) ;
  • 이종수 (배재대학교 생명유전공학과)
  • Lee Dae-Hyoung (Department of Life Science and Genetic Engineering, Paichai University) ;
  • Lee Jae-Won (Department of Life Science and Genetic Engineering, Paichai University) ;
  • Jeong Jae-Hong (Agriculture Venture Team. Chungnam Agriculture Techno-Park) ;
  • Lee Jong-Soo (Department of Life Science and Genetic Engineering, Paichai University)
  • 발행 : 2006.03.01

초록

새로운 고지혈증 예방 제품 개발을 위한 기초 자료를 얻고자 우선 전통 된장으로부터 HMG-CoA reductase 저해 물질을 강력하게 세포외로 생산하는 D-3 세균을 최종 분리 하였다. D-3 균의 미생물학적 특성을 조사한 결과 그람양성의 간균으로 운동성이 있었고 통성 혐기성이였다. 이들 특성과 16S rRNA 염기서열의 분석 결과 등을 종합하여 Bergey's manual로 동정한 결과 Bacillus cereus D-3로 동정되었다. HMG-CoA reductase 저해물질 생산 최적 조건을 조사한 결과 Bacillus cereus D-3를 glucose 2%, corn steep liquor $0.6%,\;K_{2}HPO_4\;0.04%,\;KH_{2}PO_4\;0.05%$를 함유한 Glucose-CSL 배지에 접종하여 $30^{\circ}C$에서 36시간 배양하여 얻은 상등액의 HMC-CoA reductase 저해활성이 39.4% 저해물질을 가장 많이 생성 하였다.

For the purpose of production of a novel antihyperlipemial HMG-CoA reductase inhibitor from bacteria, a bacterium which showed the highest HMG-CoA reductase inhibitory activity was isolated from traditional Doenjang. This strain was identified as Bacillus cereus (D-3) based on its microbiological characteristics and 165 rRNA sequence analysis. The maximal HMG-CoA reductase inhibitor production from Bacillus cereus D-3 was obtained by cultivation in a Glucose-CSL broth containing 2% glucose, 0.6% corn steep liquor, $0.04%\;K_{2}HPO_4$ and $0.05%\;KH_{2}PO_4$ at $30^{\circ}C$ for 36 h. The final HMG-CoA reductase inhibitory activity under the above conditions was 39.4%.

키워드

참고문헌

  1. Bachar, D. A., C. V. Stauffacher, and V. W. Rodwell. 1999. Investigation of the Iysines of Syrian hamster 3-hydroxy-3methylgiutaryl Coenzme A reductase. Biochemistry 38: 15848-15852 https://doi.org/10.1021/bi9914311
  2. Bradford, M. M. 1976. A rapid and sensitive methods for the qualification of microgram quantities of protein utilizing the principle of protein'dye binding. Anal. Biochem. 7: 248-254
  3. Claus, D. and R. C. W. Berkeley. 1986. Genus Bacillus, p 1105-1139. In Sneath, P. H. A., N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 2. Williams and Wilkins. Baltimore. USA
  4. Cushman, D. W. and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacal. 20: 1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
  5. Endo, A. 1993. HMG-CoA reductase inhibitors. Natural Products Reports 10: 541-550 https://doi.org/10.1039/np9931000541
  6. Endo, A. 2004. The discovery and development of HMGCoA reductase inhibitors. Atherosclerosis Suppl. 5: 67-80
  7. Fayek, K. J. and S. T. El-Sayed. 1980. Purification and properties of tibtinolytic enzyme from Bacillus subtilis. Zeit. Allgem. Mikrobiol., 20: 375-382 https://doi.org/10.1002/jobm.3630200603
  8. Frimpong, K. and V. W. Rodwell. 1994. Catalysis by Syrian hamster 3-hydroxy- 3-methylreductase. Proposed roles of histidine 865, glutamate 558, and aspartate 766. J. Biol. Chem. 269: 11478-11483
  9. Gerhardt, P., R. G. E. Murray, R. N. Costilow, E.W. Nester, W. A. Wood, N.R. Krieg, and G. B. Phillips. 1981. p. 407-450, Manual of Methods for General Bacteriology. American Soc. for Microbiol. USA
  10. Ha, T. Y., J. J. Cho, and S. H. Lee. 1998. Screening of HMG-CoA reductase inhibitory activity of ethanol and methanol extracts from cereals and regumes. Korean J. Food Sci. Technolo 30: 224-229
  11. Kim, H. J., D. H. Lee, Y. Y. Hwang, K. S. Lee, and J. S. Lee. 2005. Characterization of ${\beta}$-Hydroxy-${\beta}$-Methylglutaryl Coenzyme A reductase inhibitor from Pueraria thunbergiana. J. Agric. Food Chem. 53: 5882-5888 https://doi.org/10.1021/jf0505978
  12. Kim, H. J. 2003. Production and characterization of ${\beta}$Hydroxy-${\beta}$-Methylglutaryl Coenzyme A reductase inhibitor from Pueraria thunbergiana Benth. MS thesis of Paichai university. graduate school
  13. Kim, Y. S., E. A. lung, l. E. Shin, J. C. Chang, H. K. Yang, N. J. Kim, K. H. Cho, H. S. Bae, S. K. Moon, and D. H. Kim. 2002. Daio-Orengedok:uto inhibits HMG-CoA reductase and pancereatic lipase. Biol. Pharm. Bull. 25: 1442-1445 https://doi.org/10.1248/bpb.25.1442
  14. Kleinsek, D. A. R. E. Dugan, T. A. Baker, and J. W. Porter. 1981. 3-hydroxy-3-methylglutaryl coenzyme A reduct ase from rat liver. Method Enzymol. 71: 462-479 https://doi.org/10.1016/0076-6879(81)71057-7
  15. Lee, H. J. and M. S. Choi, 1999. Measurement of inhibitory activities on 3-hydroxy-3-methylglutaryl CoA reductase and Acyl-CoA:Cholesterol acyltransferase by various plant extracts in vitro. J. Kor. Soc. Food Sci. Nutr. 28: 958-962
  16. Lee, J. S., Y. J. Choi, S. J. Kwon, J. Y. Yoo, and D. H. Chung. 1996. Screening and characterization of osmotolerant and gas-producing yeasts from traditional Doenjang and Kochujang. Food Biotechnol. 5: 54-58
  17. Lee, J. S., S. H. Yi, S. J. Kwon, C. Ahn, and J. Y. Yoo 1997. Enzyme activities and physiological ti.mctionality of yeasts from traditional Meju. J. Kor. Appl. Microbiol. Biotechnol. 25: 448-453
  18. Lee, S. Y. 1990. Cholesterol. Shinkwang Publish Co. Seoul
  19. Sung, J. H., S. J. Choi, S. W. Lee, K. H. Park, and T. W. Moon. 2004. Isoflavones found in Korean soybean paste as 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitors. Biosci. Biotechnol. Biochem. 68: 1051-1058 https://doi.org/10.1271/bbb.68.1051
  20. Yoo, S. K., S. M. Kang, and U. S. Noh. 2000. Quality properties on soy bean pastes made with microorganisms isolated from traditional soy bean pastes. Kor. J. Food Sci. Technol. 32: 1266-1270