Effect of Electrochemical Oxidation Potential on Biofilter for Bacteriological Oxidation of VOCs to $CO_2$

  • Published : 2006.03.01

Abstract

In this study, an electrical conductive carbon fiber was used as a biofilter matrix to electrochemically improve the biofilter function. A bioreactor system was composed of carbon fiber (anode), titanium ring, porcelain ring, inorganic nutrient reservoir, and VOC reservoir. Electric DC power of 1.5 volt was charged to the carbon fiber anode (CFA) to induce the electrochemical oxidation potential on the biofilter matrix, but not to the carbon fiber (CF). We tested the effects of electrochemical oxidation potential charged to the CFA on the biofilm structure, the bacterial growth, and the activity for metabolic oxidation of VOCs to $CO_2$, According to the SEM image, the biofilm structure developed in the CFA appeared to be greatly different from that in the CF. The bacterial growth, VOCs degradation, and metabolic oxidation of VOCs to $CO_2$ in the CFA were more activated than those in the CF. On the basis of these results, we propose that the biofilm structure can be improved, and the bacterial growth and the bacterial oxidation activity of VOCs can be activated by the electrochemical oxidation potential charged to a biofilter matrix.

Keywords

References

  1. Alexandrino, M., C. Knief, and A. Lipski. 2001. Stableisotope- based labeling of styrene-degrading microorganisms in biofilters. Appl. Environ. Microbiol. 67: 4796-4804 https://doi.org/10.1128/AEM.67.10.4796-4804.2001
  2. Arnold, E. G., L. S. Clesceri, and A. D. Eaton (eds.), 1992. Standard Methods for the Examination of Water and Wastewater. 18th Edition, pp. 4-18. American Public Health Association, NW Washington, DC20005
  3. Baek, K. H., H. S. Kim, S. H. Moon, I. S. Lee, H. M. Oh, and B. D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905 https://doi.org/10.1159/000076921
  4. Bakermans, C. and K. H. Nealson. 2004. Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J. Bacteriol. 186: 2340-2345 https://doi.org/10.1128/JB.186.8.2340-2345.2004
  5. Bowlen, G. F. and D. S. Kosson. 1995. In situ processes for bioremediation of BTEX and petroleum fuel products, pp. 515-542. In L. Y. Young and C. E. Cerniglia (eds.), Microbial Transformations and Degradation of Toxic Organic Chemicals. Wiley-Liss, Inc., New York, N.Y
  6. Burland, S. M. and E. A. Edward. 1999. Anaerobic benzene biodegradation linked to nitrate reduction. Appl. Environ. Microbiol. 65: 529-533
  7. Carla, A. N. and B. Z. Fatherpure. 2004. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl. Environ. Microbiol. 70: 1222-1225 https://doi.org/10.1128/AEM.70.2.1222-1225.2004
  8. Chang, M. K., Tlc. Voice, and C. S. Criddle. 1993. Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolated. Biotechnol. Bioeng. 41: 1057-1065 https://doi.org/10.1002/bit.260411108
  9. Chang, R. 1998. Chemistry, p. 963. 6th Ed. McGraw-Hill. New York
  10. De Heyder, B., A. Overmeire, H. van Langenhove, and W. Verstracte. 1994. Ethene removal from a synthetic waste gas using a dry biobed. Biotechnol. Bioeng. 44: 642-648 https://doi.org/10.1002/bit.260440511
  11. Elsgaard, L. 1998. Ethylene removal by a biofilter with immobilized bacteria. Appl. Environ. Microbiol. 64: 4168- 4173
  12. Elsgaaro, L. 2000. Ethylene removal at low temperatures under biofilter and batch conditions. Appl. Environ. Microbiol. 66: 3878-3882 https://doi.org/10.1128/AEM.66.9.3878-3882.2000
  13. Frye, R. J., D. Welsh, T. M. Berry, B. A. Stevenson, and T. McCallum. 1992. Removal of contaminant organic gases from air in closed systems by soil. Soil Biol. Biochem. 24: 607-612 https://doi.org/10.1016/0038-0717(92)90087-E
  14. Han, W. S. and T. M. Park. 2004. Biodegradation of aromatic compounds from soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441
  15. Hanson, J. R., C. E. Ackerman, and K. M. Scow. 1999. Biodegradation of methyl-tert-butyl ether by a bacterial pure culture. Appl. Environ. Microbiol. 65: 4788-4792
  16. Hritova, K., B. Gebreyesus, D. Mackay, and K. M. Scow. 2003. Naturally occurring bacteria similar to the methyl tertbutyl ether (MTBE)-degrading strain PM1 are present in MTBE-contaminated groundwater. Appl. Environ. Microbiol. 69: 2616-2623 https://doi.org/10.1128/AEM.69.5.2616-2623.2003
  17. Kane, S. R., H. R. Beller, T. C. Legler, C. J. Koester, H. C. Pinkart, R. U. Halden, and A. M Happel. 2001. Aerobic biodegradation of methyl tert-butyl ether by aquifer bacteria from leaking underground storage tank sites. Appl. Environ. Microbiol. 67: 5824-5829 https://doi.org/10.1128/AEM.67.12.5824-5829.2001
  18. Kim, J. D., S. H. Shim, and C. G. Lee. 2005. Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Korea. J. Microbiol. Biotechnol. 15: 337- 343
  19. Krieger, C. J., H. R. Beller, M. Reinhard, and A. Spormann. 1999. Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T. J. Bacteriol. 181: 6403-6410
  20. Kwon, H.-H., E. Y. Lee, K.-S. Cho, and H. W. Ryu. 2003. Benzene biodegradation using the polyurethane biofilter immobilized with Strenotrophomonas maltophilia T3-c. J. Microbiol. Biotechnol. 13: 70-76
  21. Kwong, S. C. W. and G. Rao. 1991. Utility of culture redox potential for identifying static changes in amino acid fermentation. Biotechnol. Bioeng. 38: 1034-1040 https://doi.org/10.1002/bit.260380912
  22. Lee, Y. N., J. H. Lee, H. J. Cho, E. J. Shin, J. W. Park, and J. H. Park. 1999. Characterization for Campylobacter newly isolated from swine gastric mucosa. J. Microbiol. Biotechnol. 9: 778-78
  23. Mehlman, M. A. 1992. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry. VIII. Health effects of motor fuels: Carcinogenicity of gasoline - scientific update. Environ. Res. 59: 238-249 https://doi.org/10.1016/S0013-9351(05)80243-9
  24. Moll, D. M., R. S. Summers, and A. Dreen. 1998. Microbial characterization of biological filters used for drinking water treatment. Appl. Environ. Microbiol. 64: 2755-2759
  25. Morgan, R. M., T. D. Pihl, J. Nolling, and J. N. Reeve. 1997. Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum deltaH. J. Bacteriol. 179: 889-898 https://doi.org/10.1128/jb.179.3.889-898.1997
  26. Moller, S., A. R. Pederson, L. K. Poulsen, E. Arvin, and S. Molin. 1996. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl. Environ. Microbiol. 62: 4632-4640
  27. Nicholson, C. A. and B. Z. Fathepure. 2004. Biodegradation of benzene by halophilic and halotolerant bacteria and aerobic conditions. Appl. Environ. Microbiol. 70: 1222-1225 https://doi.org/10.1128/AEM.70.2.1222-1225.2004
  28. Oh. K. B., W. Mar, and I. M. Chang. 2001. Biodegradation of hydrocarbons by an organic solvent-tolerant fungus Cladosporium resinae NK-1. J. Microbiol. Biotechnol. 11: 56-60
  29. Oh, Y. S. and R. Bartha. 1994. Design and performance of a trickling air biofilter for chlorobenzene and o-dichlorobenzene vapors. Appl. Environ. Microbiol. 60: 2717-2722
  30. Oh, Y. S., Y.-H. Lee, J.-H. Lee, and S.-C. Choi. 2003. Characterization of nitrobenzene degradation by Mycobacterium chelonae strain NB01. J. Microbiol. Biotechnol. 13: 309-312
  31. Patil, N., U. Sharanagouda, J. H. Niazi, C. K. Kim, and T. B. Karegoudar. 2003. Degradation of salicylic acid by free and immobilized cells of Pseudomonas sp. strain NGK1. J. Microbiol. Biotechnol. 13: 29-34 https://doi.org/10.1159/000070247
  32. Prenafeta-Boldú, F. X., J. Vervoort, J. T. c. Grotenhuis, and J. w. van Groenestijn. 2002. Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora. strain Ti. Appl. Environ. Microbiol. 68: 2660-2665 https://doi.org/10.1128/AEM.68.6.2660-2665.2002
  33. Riondet, C., R. Cachon, Y. Waché, G. Alcaraz, and C. Divies. 1999. Changes in the proton motive force in Escherichia coli in response to external oxidoreduction potential. Eur. J. Biochem. 262: 595-599 https://doi.org/10.1046/j.1432-1327.1999.00429.x
  34. Riondet, C., R. Cachon, Y. Waché, G. Alcaraz, and C. Diviès. 2000. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J. Bacteriol. 182: 620-626 https://doi.org/10.1128/JB.182.3.620-626.2000
  35. Rooney-Varga, J. N., R. T. Andeson, J. L. Fraga, D. Ringelberg, and D. Lovley. 1999. Microbial communities associated with anaerobic benzene degradation in a petroleumcontaminated aquifer. Appl. Environ. Microbiol. 65: 3056-3036
  36. Saeed, T. and M. Al Mutairi. 1999. Chemical composition of the water-soluble fraction of the leaded gasoline in seawater. Environ. Int. 25: 117-129 https://doi.org/10.1016/S0160-4120(98)00093-2
  37. Stoodley, P., D. deBeer, and H. M. Lappin-Scott. 1977. Influence of electric fields and pH on biofilm structures as related to the bioelectric effect. Antimicrob. Agent Chemother. 41: 1876-1879
  38. Unden, G., M. Trageser, and A. Duchêne, 1990. Effect of positive redox potentials (greater than +400 mV) on the expression of anaerobic respiratory enzymes in Escherichia coli. Mol. Microbiol. 4: 315-319 https://doi.org/10.1111/j.1365-2958.1990.tb00598.x
  39. van Ginkel, C. G., H. G. J. Weltern, and J. A. M. de Bont. 1987. Growth and stability of ethane-utilizing bacteria on compost at very low substrate concentrations. FEMS Microbiol. Ecol. 45: 65-69 https://doi.org/10.1111/j.1574-6968.1987.tb02340.x
  40. Xu, K. D., P. S. Stewart, F. Xia, C. T. Huang, and G. A. Mcfeters. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64: 4035-4039
  41. Yadav, J. S. and C. A. Reddy. 1993. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignindegrading basidiomycete Phanerocheaete chrysosporium. Appl. Environ. Microbiol. 59: 756-762