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PREDICTION MEAN SQUARED ERROR OF THE
POISSON INAR(1) PROCESS WITH ESTIMATED
PARAMETERS

Hee-Younc KiMm! AND YousunGg PARk?

ABSTRACT

Recently, as a result of the growing interest in modeling stationary pro-
cesses with discrete marginal distributions, several models for integer valued
time series have been proposed in the literature. One of these models is
the integer-valued autoregressive (INAR) models. However, when modeling
with integer-valued autoregressive processes, the distributional properties
of forecasts have been not yet discovered due to the difficulty in handling
the Steutal Van Harn thinning operator o ”(Steutal and van Harn, 1979).
In this study, we derive the mean squared error of h-step-ahead prediction
from a Poisson INAR(1) process, reflecting the effect of the variability of
parameter estimates in the prediction mean squared error.

AMS 2000 subject classifications. Primary 60G10; Secondary 37M10.
Keywords. Stationary process, integer valued time series, mean-squared pre-
diction errors.

1. INTRODUCTION

There has been a growing research in modeling discrete time stationary pro-
cesses with discrete marginal distributions. The usual linear models for time
series, ARMA models, are suitable for modeling stationary dependent sequences
under the Gaussian assumption. However, the Gaussian assumption is often inap-
propriate for modeling counting data. Thus, motivated by the need for modeling
correlated series of counts, several models for integer-valued time series have been
proposed in the literature.
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Following Cox (1981), the models are divided into two broad categories:
observation-driven and parameter-driven models. Our interest is in a special
class of observation-driven models, the so-called integer valued autoregressive
(INAR) process introduced by McKenzie (1985) and Al-Osh and Alzaid (1987).
Especially, the first-order INAR (INAR(1)) model is attractive because it is a
typical example of the branching process of population: the present size of popu-
lation is the sum of those that remain (or survive) from the previous period and
immigrants that enter in the intervening period. Moreover, the Poisson distribu-
tion in the INAR(1) process is the counterpart of the Gaussian distribution in the
continuous AR(1) process. Mckenzie (1988) showed that the Poisson INAR(1)
represents a M /M /oo queueing process observed at regularly spaced intervals of
time. Therefore, in the sequel, our main focus is on the Poisson INAR(1) process.

The INAR has been extensively studied for its properties such as the ergod-
icity, the higher-order moments, and cumulants of the process. However, the
forecasting aspect in the INAR process has rarely discussed mainly because of
distributional complexity incurred from the binomial thinning operator, called
as the Steutal Van Harn operator “o”. To overcome this difficulty, Freeland
and McCabe (2004) studied the estimation of the probabilities for integer-valued
h-step-ahead forecasts in a Poisson INAR(1) process and proposed a method
calculating the confidence intervals for the h-step ahead probability mass. As al-
ternative methods, two approaches, i.e. Bayesian approach (McCabe and Martin,
2005) and bootstrap approach (Jung and Tremayne, 2006), have been applied to
estimate the predictive mass function of h-step-ahead forecasts in INAR(1) or
INAR(2) process. However, these approaches are worthwhile only when the data
comprise very low count values, for example, 0, 1 or 2 as in Freeland and Mc-
Cabe (2004) and McCabe and Matin (2005) since their methods estimate the
probability that the h-step-ahead forecast has such a small count, 0, 1 or 2.

We usually use the conditional expectation as a forecast for general integer-
valued process. In this case, we need the mean square error of the forecast to
construct its confidence interval. Therefore, after briefly discussing the basic
properties of the INAR. process in Section 2, we derive the mean square error
for the h-step-ahead forecast in the Poisson INAR(1) and also measure the effect
of the variability arising from estimating parameters in the Poisson INAR(1) in
Section 3. Some concluding remarks are included in Section 4.
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2. TIME SERIES MODELS FOR COUNTS

Many studies have been done for a family of stochastic processes which have
discrete distributions of a certain type known as self-decompossible. This family
of processes shares many features in common with the standard ARMA models
such as the form of the process expressed as a difference equation. Indeed, the
essential difference of the discrete variate process from the standard ARMA model
is that the discrete variate process uses the thinning operator defined below in
the place of the multiplication in the ARMA model.

Suppose X is a random variable taking values in Ay = {0,1,...} with prob-
ability generating function p(s) = Es*. Then the distribution of X is discrete
self-decompossible if

p(s) =p(l — a+ as)pals), |s| <1, a€(0,1), (2.1)

where po(s) is also a probability generating function. Let w; be an iid sequence
of Bernoulli random variables with P(w; = 1) = o. By noting that szz L w; has
the probability generating function p(1 — o + as), we see that the decomposition
(2.1) can be written as

X =0ao0oX +e¢,, _ (2.2)

where a0 X denotes Zfi L w; and &, is a random variable independent of a0 X,
having the probability generating function p,(s). Further details of the self-
decompossible class of distributions can be found in Steutel and Van Harn (1979).
By virtue of (2.2), a stationary integer-valued time series process X; is defined
by

Xt =aoXi_1+ey, (2.3)

where X;_; is independent of &; which is an iid non-negative integer-valued ran-
dom variables with mean E(g;) = ., Var(e;) = o2. The o-operation is referred
as binomial thinning and model (2.3) is referred as integer-valued autoregressive
process with order 1 (INAR(1)). McKenzie (1985), Al-Osh and Alzaid (1987)
and Park and Kim (2000) discussed some basic and asymptotic properties of the
INAR(1) process under various assumptions of the marginal distribution.

Under the assumptions of thinning operator, the basic properties are E{a o
X|X) =aX, E(aoX) =aFE(X), Var(ao X|X) = a(l — @)X and Var(ao X) =
a?Var(X) + ol — a) E(X).
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Since the process {X;} satisfying (2.3) is a second-order stationary if 0 <
a < 1, it is easy to show that E(X:|Xi—1) = aXi—1 + pe, E(Xt) = pe/(1 — @),
Var(X¢|X¢—1) = a(l — a)X¢—1 + 02 and Var(X;) = (ape + 02)/(1 — o?). Using
these two moments, we have that the autocorrelation function of INAR(1) is
px (k) =aF for k=0,1,...

The INAR(p) process {X:}, a seemingly natural extension of the INAR(1)
process, is defined by

Xi=opoXs1+agoXp_o+ "'+apOXt_p+€t, (24)

where the assumptions for {e;} are the same as those of INAR(1), all counting
series {w;;} involved in ¢; 0 Xy = Zj{:ﬁ’ w;; are mutually independent, and
a; € [0,1] for ¢ = 1,...,p. Furthermore, {£;:} are independent of all counting
series. This definition has been proposed by Du and Li (1991), which is different
from that of Alzaid and Al-Osh (1990). That is, they assumed that the condi-
tional distribution of the vector (a; 0 X%, ..., 0p0X;) given X; = x is multinomial
with parameter (a1, ...,0p, ) and is independent of the past history of the pro-
cess. The two different formulations lead to different second-order structures. In
particular, the INAR(p) under Du and Li (1991) has the same autocorrelation
structure as that of the continuous countpart AR(p) and the conditional expec-
tation of X; given past information is linear, whereas the INAR(p) under Alzaid
and Al-Osh (1990) not only has the same autocorrelation structure as that of
the ARMA(p,p — 1) but also the conditional expectation of X; is non-linear,
thus necessitating non-linear least squares estimator to be used, and should be
extremely complex. For theses reasons, several studies (Silva and Oliveira, 2005;
Latour, 1998; Park et al, 2006) focused only on INAR(p) under Du and Li (1991)’s

assumptions.

3. PROPERTIES OF PREDICTOR FOR P0ISSON INAR(1) PROCESS

The most common procedure for predicting in time series models is to use
conditional expectation, which is the predictor with minimum mean squared error
(MSE). Let Xrin = E(X74+r|X1,...,Xr). Then we have the prediction mean
squared error (PMSE) of Xr4p as given by

LEMMA 3.1. Let {X:} be a stationary INAR(1) process of (2.3), where {e:}
15 iid Poisson random variable with parameter A . Then,
Al —a?)

XT+h = E(Xr4n|Fr) = OthXT + 1~ a

3
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where Fr = o(X1,...,Xr) and the PMSE of Xr., is given by

M1 —a?t)

E(Xr4n — Xpin)? = o

(3.1)

The proof and all subsequent theoretical proofs are provided in the Appendix.

Lemma, 3.1 shows the PMSE of XT+h under the assumption that the param-
eters 8 = (a, A)’ are known. However, in the practical sense, 8 is unknown in
advance. Thus, we estimate the PMSE of X7, by plugging an estimator of 8
into (3.1). To do this, we need the asymptotic property for an estimator of @ as
shown below with the least squares estimator of 6.

LEMMA 3.2. Let {X;} be the same INAR(1) process as in Lemma 3.1, and &
and X be the least squares estimators minimizing S -, (X; — aXs—1 — \)?. Then

x/’f<‘j‘\ ) ‘j\‘) 4 N(0,I7Y),
where
J-1_ (3@;#2)+(1_a)(1+a) —(1+a)/\) '
—(1+a)A A+ FEaN?
From Lemma 3.1, the predictor of X7, replaced o and A with the least

squares estimators & and A is now

1-ah
1-6°

XT+h = dhXT + 5\ (3.2)

The Taylor expansion of (3.2) at § = 6 gives

A 1—-ah
XT+h:06hXT+/\1_a
o hah“la—l)+1—ah R
—I—{hah LX7 + A ((1_a)2 }(a—a)
1-ah .

—— (A= X) + 0p(1).

Therefore, the prediction error, X7 p — Xpyp, is

Xrih — Xrin = Xren — Xrin
h—1 ha"~Ha=1)+(1-a")
+Ha—a A=) (ha AT e ) <XT>

1— h
0 Ta !

= Xrin — Xpyn + (0 — 0)MX7 + 0,(1), (3.3)
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where

0 1-ah 1

l—a

h—1 ha!~Ha—-1)+(1-ch)
M = (ha A (1—a)? ) and Xp = (XT) .

We employ the assumption that there are two independent processes: one is
the process for estimating parameters involved in the Posson INAR(1) model and
the other one is the process for predicting the future values of X;. This assump-
tion has used to derive the prediction mean squared error reflecting estimation
error of the Gaussian AR(p) process (Bloomfield, 1972; Bhansali, 1974; Schmidt,
1974; Yamamoto, 1976). Under this assumption, using Lemma 3.1 and Lemma,
3.2, we have the following main result.

THEOREM 3.1. Let {X:} be the same INAR(L) process as in Lemma 3.1.
Then the asymptotic mean squared error of Xrip, is

a2k
E(Xrin — X14n)? = &11_—042—) + tr{(M’%J“lM) (ggi; E(fT)> }

+ o(1) .

4. CONCLUSION

An important concern in the time series analysis is constructing prediction
intervals to capture the future values with the nominal coverage given a realization
of the past variables. We derived a h-step-ahead predictor with the minimum
mean squared error in a Poisson INAR(1) process and its prediction mean squared
error for the confidence limits. In practice, since we never know the parameters
involved in the prediction mean squared error, we further derived the prediction
mean squared error reflecting the variation of estimating the parameters in the
Poisson INAR(1) process.

It is not immediate to extend the results of the Poisson INAR(1) process dis-
cussed in this paper to a general Poisson INAR(p) process since more complex
the distributional property, larger the p in INAR(p) mainly due to the binomial
thinning operator again. To avoid this complication in forecasting future values
while conserving the characteristics of a count data, one possible way is a boot-
strap approach as a distribution free alternative. For example, one can use the
bootstrap method of Alonso et al. (2002) by replacing the multiplication used
in AR(p) model with the thinning operator used in INAR(p) model. Results for
the bootstrap method will be reported elsewhere in due course.
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APPENDIX : MATHEMATICAL PROOFS

Proof of Lemma 3.1.
As shown in Al-Osh and Alzaid (1987), since

h—1

(Xr, oo X7+ o oerini) (A.1)
i=0

d
(X1, X140) =

and « o g; is Poisson(a\) when &; is Poisson(A) by the probability generating
functions, we have

h—1 h—1
Z o oepipq is Poisson(z a'd). (A:2)
1=0 =0

Thus, (A.1) and (A.2) implies that the distribution of XT+h given Fr is a convo-
lution of binomial distribution with parameters (X7, o) and Pmsson(zro @' A).
Hence, we have

A1 —a?) A A A
l-a (XT“ 1—a>

{X7 —A/(1 — )} of the first term in the right-hand side of (A.3) measures how

much X7 deviates from the marginal mean of the process. Furthermore, since as

h — o0, the first part of (A.3) becomes zero, the h-step-ahead forecast approaches

E(Xryn|Fr) = o"Xr + (A.3)

l -«

the marginal mean of the process.
Using (A.1) and (A.3), we have the PMSE of X7, = E(X74n|Fr) as

h—1
E{XT+h - E(XT+h|fT)}2 = E{ahoXT+ Z(a’ 05T+h,—i) - (ahXT + Z Oli)\) }2
i=0 ;
Thus,
h-1 .
E{Xrih — E(Xrn|Fr)}? = E{(a" 0o Xr — o"X7) + Z(aZ O ET4h—i — OZZ/\)}
. i=0
h—1 .
= E(ah o Xt — ah)(T)2 + Z E(ai CETLh—i — a’/\)2
i=0
h—1 . ‘
+2 Z E(ah o Xp — oz””XT)(Ozz 0 EPth—i — Q'X)
i=0
+ Y B(@oerini—aN(eloerp—o)). (A4)
0<i,j<h—1

i#]
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Since o o e74p—i~ Poisson(a*A) and o’ o epyp—j~ Poisson(a’\) which are
independent from independence of &, we have

Z E(a* o epyp—i — @*N)(od 0 epip_j— X)) = 0. (A.5)
0<i,j<h-1
i#j

The independence of X7 and epyp, h > 0 gives

h—1
Y E(a" o X7 — o*X1)(o} 0erini — a'A) =0. (A.6)
=0

These (A.5) and (A.6) reduce (A.4) to
h—1 . .
E(a" o X1 — o"X71)? + Z E(a'oeryni— a'N)2 (A7)
i=0

Since the first term of (A.7) is E[{E(a" o X1 — o"X7)?|X71}] = E{a"(1 -
aM X1} = a*(1-a?)A/(1—a), and the second term is the variance of atoeryp_;,
which follows Poissson(a’)), the claim holds. O

Proof of Lemma 3.2.

Observe that the least squares estimator (&, )’ of (o, A)' is the solution of
the equation '

T T T
Yat | _ (X¢—aX; 1 —AN)Xer} (O
P A) = tZ:; t§=:2<¢kt>—;( (Xe —aXi1~A) >_<0)‘

It is easy to show that ¥(a, A) is a martingale, and %; is a martingale differences.
Thus, by Klimko and Nelson (1978), the least squares estimator (é&, A)’ follows
asymptotic normality with mean (@, \)" and variance V"WV ™! where

) P ‘
V:E<3—g‘-¢°‘t m?ﬁat) and W:E(’(/Jtdlé):E( Vat wat'ﬁz)/\t>.

o
Fa¥x FxUae YatPre V3

Hence, it suffices to show that

viwv-! = (a(l+az) +(1-a)(l+a) -(1 +a))\> -

—(1+a)A A+ ez
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Using the thinning property of Poisson distribution, it is immediate that
EX:)=A(1-a), E(X})=MA+1-a)/(1—a)? and E(X}) = (N3 + A1 -
a)(3A\+1—a)}/(1 — @)3. Thus, we have

Ly Lvn

= -F Xty X _ 2 ()2 A
Xi-1 1 A 1 .

l—a

For W, since E{(Xt—aXt_l—)\)2|Xt_1} = Var(Xt|Xt_1) = a(l—a)Xt_l—}—)\,
and X; is stationary,

E(yh) = B{(X: — aXs1 — \)?X7 )}
= E[X7 L E{(X: — aXi1 = N)?|X;1}]
= E[X} {a(l - a)Xi1 + A}
= E{a(l - a)X{ + AX}}.

Similarly, using the conditional expectation technique, we have

E(Yatthre) = E{(Xt — aXi1 — M) Xpo1(Xio1 — aXi-1 — N)}
= E{(Xt — aXt_l - )\)2Xt_1}
= E[X 1 E{(X: — aXi-1 — N)? X1}

2
= ai+ i\_(l_—La)
l—a
and
E(w?\t) = E(X; — aXi_1 - )\)2 = E[E{(Xt —aXp g — A)let—l}]
= E{e(l - a)Xi—1+ A} = (1+ )\
This completes the proof. J

Proof of Theorem 3.1.
Since XT—}—h — XT—+—h = XT—HL - XT+h + (é — O)IMXT + Op(l) from (3.3), the
asymptotic mean squared error of XT+h is
E(X7in— Xrin)?
= E(Xr+n — Xr4n)® + E{XTM'( - 6)(6 — 6)MX7} +0o(1). (A.8)
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The first term of (A.8) is E(Xpyn— X74n)? = M(1—0a?")/(1-a) from Lemma
3.1, and the second term is

Eltr{X,M'(6 — 6)(6 — 6))MX7}] = E[tr{M’

(6 - 6)(6 - 0)MXrX7}]
= tr[E{M'(§
1

0)(6 — 6)M}E(XrX7)]

E(X%) E(X7)

E(Xr) 1 ’
(A.9)

= tr (M’TJ_lM)

where we used the independence assumption between the processes in estimation
and prediction for the second equality, and the third equality follows from Lemma
3.2. This completes the proof. 0O
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