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SOME POINT ESTIMATES FOR THE SHAPE
PARAMETERS OF EXPONENTIATED-WEIBULL
FAMILY'

UMESH SINGH!, PRaMmoD K. GupTal?2 AND S. K. UPADHYAY!

ABSTRACT

Maximum product of spacings estimator is proposed in this paper as
a competent alternative of maximum likelihood estimator for the parame-
ters of exponentiated-Weibull distribution, which does work even when the
maximum likelihood estimator does not exist. In addition, a Bayes type esti-
mator known as generalized maximum likelihood estimator is also obtained
for both of the shape parameters of the aforesaid distribution. Though, the
closed form solutions for these proposed estimators do not exist yet these
can be obtained by simple appropriate numerical techniques. The relative
performances of estimators are compared on the basis of their relative risk
efficiencies obtained under symmetric and asymmetric losses. An example
based on simulated data is considered for illustration.
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1. INTRODUCTION

The data obtained from lifetime experiments are referred to as failure time
data and such failure time dafa, results from different lifetime experiments con-
ducted under sophisticated controlled and complex environments, exhibit differ-
ent types of failure rates, which are generally categorized as, constant, monotone
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(increasing and decreasing) and non-monotone (unimodal and bathtub) type of
failure. This specific characteristic of failure time data is an added advantage that
helps us to perform the quite crucial task of model specification during its infer-
ential procedures within parametric approach. Probably, Lawless (1982) could
be one of the good references for interested readers to see the relationship among
failure rate, probability density and distribution function with various examples.

A number of lifetime models have been proposed in literature, which are
usually used to analyze failure time data, see Martz and Waller (1982), Lawless
(1982), Sinha (1986) for details. However, most of them are quite appropriate
and famous for constant and monotone type of failure rates. Exponential model
for constant failure rate and Weibull distribution for monotone type of failures
are few examples, which are enormously used for failure data analysis due to
their standard statistical inference and closed form solutions in most of the cases.
Whereas, non-monotone failure rates, which are quite common in engineering,
space research, biological and biomedical fields (survival analysis), are somehow
accommodated by some generalized families of distributions or some of mixture
models. Generalized gamma, generalized F, generalized Reyligh, and mixture of
Weibull distributions could be some common names among all, however, readers
are referred to Stacy (1962), Prentice (1975), Slymen and Lachenbruch (1984),
Rajarshi and Rajarshi (1988) for further details. The important drawbacks of
the models, used for failure time data accommodating non-monotone type of
failure rates, are that the inferential procedures related to these models are non-
standard. Besides, mathematical as well as computational complications become
quite strenuous as they involve too many parameters, see Bain (1974), Gore et
al. (1986), Lawless (1982), etc. for detail discussion.

Hence, the need for developing one such model, which can at least deal with
nonmonotone type of failure rates as efficiently as exponential and Weibull dis-
tribution do for constant and monotone type of failures, has been felt since long,
but, rapid advancement in science and technologies, huge cost associated with
such lifetime experiment and also due to direct impact over human health and
their safety, made its need, somewhat indispensable. An attempt in this direction
was made by Mudholkar and Kollia (1990) and Mudholkar et al. (1991) who sug-
gested an extension of Weibull family of distributions and named it, generalized
Weibull family of distributions. This generalized Weibull family of distributions
accommodates all most all types of failure rates but later on, Mudholkar et al.
(1996) pointed out that the members of generalized Weibull family with bathtub
failure rate are non-regular and thus caused non-standard inference. At the same
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time, Mudholkar and Hutson (1996) introduced another extension of Weibull
family, called, exponentiated Weibull distribution (EWD). The author discussed
and showed in his paper that, this new family of distributions efliciently accom-
modates almost all types of failure rates (monotone, unimodal and bathtub) and
it consists entirely of regular distributions. Probability density function (pdf)
and distribution function (df) of EWD are given by

F(yle,8) = af {1 —exp(—y*)}°* Texp(~y*)y*t, 0<y<oo, (L1)
F(y) = {1 - exp(-y™)}’, (1.2)

where a > 0 and § > 0, both are the shape parameters in the model (1.1). The
shape of pdf and failure (hazard) functions governed jointly through o and 6. A
brief detail about these two functions is discussed hereunder.

The pdf and df of EWD turn to the pdf and df of Weibull distribution for
® = 1 and also behave like constant exponential distribution when both « and
# are equal to one. The applications and structural analysis of exponentiated-
Weibull family have been discussed by Mudholkar and Hutson (1996) and they
showed that the shapes of pdf (1.1) are monotone decreasing with o < 1 and
EWD also have unimodal shape for af > 1.

On the other hand, failure (hazard) function, say, h(y) = f(y)/{1 — F(y)}
of EWD accommodates a broad variety of monotone shapes including unimodal
and bathtub, restricted over the range of a and 8. For example, shape of h(y)
is, unimodal for o < 1 and af > 1; bathtub for o > 1 and af > 1; monotone
increasing for a > 1 and af > 1; and monotone decreasing for ¢ < 1 and af < 1.

Parametric inference, mainly estimation procedures under classical and Bayes-
ian setup for EWD seemed to be initiated in detail by Singh et al. (1999) and
thereafter Singh et al. (2002) who developed maximum likelihood estimator
(MLE) and different Bayes estimators, under quite general conditions and com-
pared their performances through their different risks based on extensive simu-
lation study. Estimation and performances of two and three parameters EWD
have also been studied by Singh et al. (2005a, b) under classical and Bayesian
set-up when sample observations are incomplete.

This work is in fact, a motive to compare the MLE of parameters of EWD with
proposed maximum product of spacings estimator (MPSE) which is equivalent
to the MLE but works in more general conditions as compared to MLE.

This is quite general that MLE is well appreciated and most commonly used,
among all classical methods of estimation, such as method of moment, method
of minimum chi-square, method of least square, method of minimum variance
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unbiased estimator, because, it meets certain optimum properties of a good esti-
mator. But, awkwardly, MLE may not exist in certain cases, particularly, when
the probability density function is J shaped. Sometimes MLE can lead to in-
consistent estimators as reported by various authors; for examples, Huzurbazar
(1948), Harter and Moore (1966), Johnson and Kotz (1970), Cheng and Amin
(1983) and Ranneby (1984) etc. In fact, the comments of non-existence of MLE
by aforesaid authors somewhat made us curious to compare the MLE of EWD
with MPSE. Since the papers of Singh et al. (1999) and Singh et al. (2002)
compared the MLE with different Bayes estimators, which are indeed developed
under non-informative priors, however, in some circumstances, risk of MLE of
EWD is quite higher than some Bayes estimators. Henceforth, we propose here
to use the maximum product of spacings (MPS) method for EWD and compared
with MLE, somewhat to check their trend of risks, numerically.

MPSE was introduced by Cheng and Amin (1983) as an alternative of MLE.
They discussed and showed that MPSE also possesses the optimum properties
of good estimators like MLE, such as, it provides consistent estimators with
asymptotic efficiency not only when MLE exists, but also when MLE fails to
exist. Further mentioned that in some situations, MPSE can be a function of
sufficient statistics, whereas, MLE is not. Apart from this, MPSE also provides
consistent estimator of parameters in those cases, where MLE is to be noted
inconsistent. With such properties and characteristics, MPSE seems to be quite
competent for its use whether MLE does exist or not. For mathematical and
further details, see Cheng and Amin (1983) and Ranneby (1984).

The MPSE procedure is based on the maximization of geometric mean of spac-
ings within parametric space, whereas, spacings imply for the (uniform) spacing of
the ordered random sample after transforming it into unit interval. For reference,
see Cheng and Amin (1983), who had discussed about the method of estimation
thoroughly. Some more details about the use of MPSE in case of parametric
models can be had from the papers, such as Shah and Gokhale (1993), Hossain
and Nath (1997).

A Bayesian counterpart of MLE is generalized maximum likelihood estimator
(GMLE) and it is defined as the value of parameter for which, the marginal
posterior of the parameter attains maximum value. If a non-informative type of
prior is considered for the parameter then GMLE may, therefore, be interpreted
as the most probable value of the parameter in the light of the given sample.

Hence, GMLE may also be considered as a competitive estimator to MPSE and
MLE.
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The next question that arises at this stage is, how to compare the perfor-
mances of various estimators obtained by using the procedures mentioned above.
In classical inference, the mean square error, which is nothing but the risk (av-
erage loss over sample space) under square error loss, is often used to study
the performance of the estimators for their long-term use. No doubt, the use
of squared error loss function (SELF) has been justified in statistical literature
on various grounds and hence, it is considered as most general and commonly
used loss function. However, SELF is symmetric loss function, which gives equal
importance to under estimation and over estimation of equal magnitude. It is
generally agreed upon that in life testing and reliability context, overestimation
and underestimation may not be of equal importance. Thus, use of asymmetric
loss function seems to be more justified in such circumstances. The most popu-
lar asymmetric loss function in literature is LINEX loss function among various
others. LINEX loss is direct extension of SELF, which is introduced by Varian
(1975) and popularized by Zellner (1986). The LINEX loss function (LLF) is
defined as:

L(A) =b(e®® —aA ~1), a#0, b>0, (1.3)

where A = (© — ©) denotes the scalar estimation error in using © to estimate
O, a and b are shape and scale parameters of the loss function, respectively. For
small values of a (near to zero), LLF is same as SELF and for choice of nega-
tive/positive values of a, it gives more weight to overestimation/underestimation.
For further details, see Zellner (1986). Various authors, including Rojo (1987),
Khatree (1992) have used LINEX loss function in different estimation problems.

For the comparison of the estimators, we, therefore, propose to use the cri-
terion of risk (average loss over sample space) under both loss functions, SELF
and LLF.

MPSE and GMLE for exponentiated-Weibull shape parameters are developed
in the next section assuming, none of the parameters are known. MLE is also
discussed in Section 2. The proposed estimators have been illustrated through
a simulated data set in Section 3. The expressions for the estimators discussed
in Section 2 do not reduce into nice closed forms and hence these are obtained
through iterative numerical methods. Henceforth, we performed Monte Carlo
simulation in Section 4. Comparative study of their performances on the basis of
their risks obtained under SELF and LLF is done in Section 5. A brief conclusion
is given in the last section.
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2. ESTIMATION OF PARAMETERS

Let us assume that n items following a life time distribution expressed in (1.1)
are subjected to life testing and the observed lifetimes are y1,¥2,..., Yn.

2.1. Mazimum product of spacings estimators (MPSE)

Following Cheng and Amin (1983), MPSE of « and 6 are the value of these
parameters, which maximize the geometric mean of spacings and expressed below
after taking logarithm:

n+1
G(o,6) = — i - 3" l0g(Gi(a 0)), (2.1)
i=1

where G;(a,0) = F(yi, o, 0) — F(yi-1,0,0), 1 =1,2,...,n+1, yo =0, Ypt1 = 00
and F(y,a,0) = F(y) is given in (1.2). The normal equations for the parameters
a and € can be obtained by differentiating (2.1) with respect to the parameters o
and 6, respectively and equating them to zero. The resulting equations are given

below.
nt+l e o —yNG—1 —y® . a —y® NP1
e YiyXlogy;(1 —e ¥ —e Yi-iy® | logy;—1(1 — e %t
QZ yz gyl( ) _ yz—;[ agyl 1( € ) — 07 (22)
= (1—e %) — (1 —e ¥im1)?
and
% (1 —e %) log(l — %) — (1 — e ¥-1)? log(1 — e ¥-1) o, (2.3)

P (1—e %) — (1 — e ¥1)b
Numerical solution of (2.2) and (2.3) is obtained by using the subroutine COS5NCF
of NAG (1993) library which is based on Newton-Raphson type iterative proce-
dure. The MPSE, thus obtained, for o and ¢ have been denoted by @nmps and

Omps, respectively.

2.2. Generalized mazimum likelihood estimator (GMLE)

The likelihood function for the sample observations can simply be obtained

as,
n

Uylo, 0) = ()™ Hyio‘_le_y?(l —e ¥ a8 >0. (2.4)

=1
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Independent non-informative type of priors for unknown shape parameters, «
and # to be considered as,

1
gi(a) = = 0<a<ec, (2.5)

and ]
92(0) = 7 g>0. (2.6)

Hence, the joint posterior density of the parameters can be obtained with the
help of (2.4), (2.5) and (2.6) as:

a9, e W yd (1 — W)L
6 = 1=1 1 9.
[T(e0ly) e | .
where i 1
. © a” =1 e—y?y‘?‘—
= Sl e g s
o Il (- e¥){-log T, (1 - e¥)}"

Now, the marginal posterior of a parameter is obtained by integrating out the
other parameter from joint posterior distribution. Hence, the marginal posterior
of o and @, after simplification reduces to

_ o [y e Wy
Hew =5 i et ey @9
and gn-1
116w = Jl(n—_Ji), (2.10)

respectively, where j; is given in (2.8) and
c n
Jo = /0 a™ H (1—e V)0 e ¥y gq, (2.11)
i=1

Since the marginal posterior of the parameters given in (2.9) and (2.10) are not in
closed forms, the usual method of maximization cannot be used in this situation.
However, the GMLE of the parameters of EWD have been obtained with the help
of following proposed algorithm.

Evaluate the posterior function 7(s) for various values of s (starting from an
initial value close to zero and taking an increment h). Simultaneously, search
a value s; such that, the successive differences D1 = (s1) — (s1 — h) and D5 =
(s1 + h) — (s1) are of different sign. Thereafter, the increment in h is changed
to decrement of half magnitude (i.e. h/2) and the above process is continued
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backward from the point s; + h to get the next point such that the successive
differences are again of different sign. The whole process is continued till incre-
ment/decrement in h attains the desired accuracy (say, 10*). It may be noted
here that the above procedure provides the first local maxima. In order to check
whether it is a global maxima over the whole parametric space, the value of the
posterior function is also evaluated at other points in the parametric space and
compared with the value of evaluated maxima. The results reported in the paper,
therefore, give the global maxima of the posterior and hence are the GMLE. The
GMLE for « and 6§ are denoted by @y, and égml, respectively.

2.3. Mazimum likelihood estimator (MLE)

Differentiating the logarithm of likelihood function given in (2.4) with respect
to a and f and equating them to zero, we get the normal equations for the
parameters o and 8. After simplification, it is obtained as:

n

9 =— —,
o log(l —e™%)

(2.12)

and

n

Z e % y2 log(y;)

l—e yl

n +Zlog v:) Zyz log(yi) — Z 110g (1= e o)
i=1 =

i:l

-y
oy hyiloslu) _ (2.13)
(1—e %)

Since the analytical solutions of these equations do not exist, therefore, we use
iterative method to obtain the MLE of the parameters. The detail about the
solution of the likelihood equations may be had from Singh et al. (1999). The
MLE for o and 6 have been denoted by @mie and 0,6, respectively.

3. ILLUSTRATIVE EXAMPLE

We have simulated a sample of size 5 from EWD for o = 2.0 and 8 = 0.5 to
illustrate the estimators proposed in Section 2. The generated sample values are
Y = 1.0001; 0.2287; 0.3851; 0.2280; 1.2162. Table 3.1 summarized the results
obtained for EWD parameters using these observed samples.

The present example shows that the procedures mentioned in the previous
sections for obtaining the estimates from given sample can easily be implemented.
So we may expect that it can be used in practical, where the data is described by



ESTIMATION FOR THE SHAPE PARAMETERS OF EWD 71

TABLE 3.1 Estimators under various methods for « = 2.0 and 6 = 0.5

Estimates «@ [
MLE 2.817 | 0.427
MPSE 1.437 | 0.656
GMLE 2.817 | 0.331

the EWD. Since it will be not quite reasonable to make any conclusion regarding
the performances of the estimators, just on the basis of only one set of example
and therefore we perform an extensive simulation study in the next section to
study their performances in long run use.

4. SIMULATION STUDY

Performance of the above stated estimators will be studied on the basis of
their relative risk efficiencies. The relative risk efficiencies of MPSE with respect
to GMLE and MLE are denoted by E1s = Rgmi/Rmps and Eas = Rpmi/Rmps
respectively, where, Rpps, Rgmy and Ry, denote the risk of the estimators under
SELF. Similarly, the relative risk efficiencies of MPSE with respect to GMLE
and MLE under LLF are defined as Ei, = Ry,,;/Ryps and Ear, = R /Ry,
respectively; where R'mps, R;ml and R’ml denote the risk of the estimators under
LLF. As seen in Section 2, analytical expressions for the estimators and, hence,
their relative risk efficiencies do not exist in close form. Therefore, the comparison
of the estimators is to be made on the basis of Monte-Carlo simulation studies.

For the simulation study, we considered following values of the parameters:

n = 10(10)40; a = 0 = 0.5(0.5)5; ¢ = 4(2)12; a = —1.0, 0.001, 1.0.

Five thousand samples of different sizes have been generated from EWD for each
combination of a and 6. Risk efficiencies of the GMLE and MLE with respect to
the MPSE have been obtained for a and 6 on the basis of these 5000 samples. The
results, thus, obtained are plotted on graphs, where the values of the parameter
are taken on z-axis and corresponding relative risk efficiencies of the estimators
are shown on the y-axis. It may be note worthy that the scale on y-axis is not same
for all figures. Figures 5.1 and 5.2 show the relative risk efficiencies of estimator
under SELF whereas, Figures 5.3 and 5.4 show the relative risk efficiencies under
LLF.
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5. COMPARISON

Due to paucity of space and similarity in trend of the relative risk efficiencies,
only important results are shown in this paper, although the comparison is based
on complete results.

It is to be noted that a change in the value of hyperparameter c will effect the
risk of GMLE only, whereas the risk of other estimators will remain same. The
study showed that the risk of GMLE of « is more or less constant for all choices
of ¢, while change in the magnitude of risk of GMLE of 8 is not quite significant.
Hence, the results shown in this paper are the case, when ¢ = 6.

Similarly, Fog and Foy, for the parameters o and 8 depict, almost same trend
for all considered values of n, while Fyg and E;; exhibit a very little change in
trend. Hence, only one value of n (namely n = 10) is selected in this paper for
illustration of results.

5.1. Comparison of estimators under SELF

5.1.1. Estimatiors of . It can be seen from the Figure 5.1, E15 and Eys are more
or less parallel to the x-axis for all considered values of 6, showing that relative
risk efficiencies of the estimators of «, for fixed value of 8, do not vary much for
variation of the values in o. F1, and Es, of the estimators are to be noted greater
than one for almost all the considered values of the parameter, and hence, one
can conclude that MPSE performs better than other two estimators (MLE and
GMLE) of a. It may also be noted that E;; is always greater than Fs, showing
that the MLE performs better than GMLE. However, the gain in using MLE
against GMLE reduces for higher values of 6, see, Figure 5.1.

5.1.2. Estimators of 8. Ea; of 8 increases as the value of the parameter  increases
for given «, whereas Eis of 6 decreases. It may also be noted, E); is always less
than Fy;, see, Figure 5.2. This shows that there is greater gain in risk, using
MPSE against MLE as compared to using MPSE against GMLE. For large values
of a, Ey; is less than one, i.e. GMLE performs better than MPSE.

5.2. Comparison of estimators under LLF

5.2.1. Estimators of . When a = 1.0, i.e. the case when overestimation is
more serious than underestimation, E;; of « increases as values of « increases.
Whereas, Fyr, of o shows a similar trend, except for a lying in the range 1.0 to
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F-1: RRE of the estimators of parameter o under SELF for n=10, ]
0=0.5, 1.0, 5.0 ’
|

RRE

0.5 1 15 2 25

~#-E15=05 B-E1S=10 _ E1S=6.0 -¢-E28=05 - E25=10 —-E25-50

FIGURE 5.1 RRE of the estimators of parameter & under SELF for n = 10,6 = 0.5,1.0,5.0.

F-2: RRE of the estimators of parameter 6 under SELF for n=10,
=0.5, 1.0, 5.0

RRE

0.5 1 1.5 2 25
0
—-E15=0.5 ~2~E1S=1.0 E18=5.0 -4~ E28=0.5 -%~-E25=1.0 ~e—E25=5.0

FIGURE 5.2 RRF of the estimators of parameter 8 under SELF for n = 10,a = 0.5,1.0,5.0.
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F-3: RRE of estimators of parameter o under LLF for n=10, 8=2.0,
and a =-1.0, 0.001, 1.0

1.00E+18 -

1.00E+15 -

1.00E+12 - e

RRE

1.00E+09 - e

1.00E+06 - T

1.00E+03 ¢ -

1.00E+00 = ————
5.00E-01 1.00E+00 1.50E+00 2.00E+00 2.50E+00

|
]
o |
|
1

'——~E1L=0.001 —#—E2L=0.001 ~ - E1L=1.0 ~~E2L=1.0 =¥ E1L=-1.0 ~e—E2L=-1.0]

FIGURE 5.3 RRE of the estimators of parameter o under LLF for n = 10,8 = 2.0,
and a = —-1.0,—0.001, 1.0.

1.5. Figure 5.3 exhibits these trends. This implies that MPSE has smaller risk
as compared to MLE and GMLE.

For a = —1.0, where underestimation is more serious than overestimation,
Ey; and By of o are close to each other, though their magnitude are slightly
higher than one. This shows that under this situation, MPSE performs slightly
better than MLE and GMLE, which have more or less same magnitude of risk.

5.2.2. Estimators of . F1p and E3;, of # increases as the value of 6 increases, in
the case, when a = 1.0, which is similar to the trend obtained for the estimators
of o. Further, it may be noted that for the estimators of 8, Eyy, is greater than
E;1,. Whereas for the estimation of o, E11 was obtained to be greater than Esf.
This shows that use of MPSE against MLE has greater gains than use of MPSE
against GMLE.

For negative value of (a = —1.0), it may be noted that Ey, and Eyj, are quite
close to each other and their magnitude are either closer to one or slightly less
than one, see Figure 5.4.
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F-4: RRE of estimators of parameter 0 under LLF for n=10, a=2.0,
and a = -1.0, 0.001, 1.0

‘ 1.00E+07 }
\ 1.00E+05 -

| @ 1.00E+03 |
L

1.00E+01 -

1.00E-01 e e - = e e - —
0.5 1 15 2 25

‘——E1L=0.001 -=-E2L=0.001  E1L=10 —~E2L=1.0 #E1L=-10 ——E2L=-1.0

FIGURE 5.4 RRE of estimators of parameter @ under LLF for n = 10,a = 2.0,
and a = —1.0,0.001, 1.0.

6. CONCLUSION

On the basis of above discussion, it may be concluded that the MPSE gives
smaller risk in most of the situations when overestimation and underestimation
are equally important, except in the case (e.g. E1s = 5.0) where risk of GMLE
for 6 is noted to be smallest, when « is quite large. Hence MPSE could be
recommended for its use in general, provided that the prior believe over parameter
is not quite close to their true values, otherwise GMLE could be a good choice
for the estimation of 6.

On the other hand, if overestimation is more serious than underestimation,
one can safely use MPSE as it provides smaller risk than MLE and GMLE.

On the contrary, when underestimation is more serious than overestimation
any one of these estimators can be used, because in this case all the estimators
have risks of more or less equal magnitude.

As far as from this study, It is also worth to mention that the trend of the
risks of the MLE is quite similar to the trend of risk of MPSE, whereas the risk
of GMLE is shown significantly different trend, only when a = 1.0.
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