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STATIONARY S-MIXING FOR SUBDIAGONAL
BILINEAR TIME SERIES'

OES0OK LEE!

ABSTRACT

We consider the subdiagonal bilinear model and ARMA model with sub-
diagonal bilinear errors. Sufficient conditions for geometric ergodicity of as-
sociated Markov chains are derived by using results on generalized random
coefficient autoregressive models and then strict stationarity and S-mixing
property with exponential decay rates for given processes are obtained.
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1. INTRODUCTION

In the last two decades, nonlinear time series have gained much attention.
Many classes of nonlinear time series models including self-exciting threshold
models, bilinear models, ARCH-type models, Markov switching models have been
developed in the literature and successfully applied in various fields such as finance
and macroeconomics (Tong, 1978; Granger and Andersen, 1978; Engle, 1982;
Hamilton, 1989).

Among many other nonlinear time series models, we are interested in bilinear
models introduced by Granger and Anderson (1978) and Subba Rao (1981) and
later studied in, for example, Tong (1981), Pham (1985, 1986), Weiss (1986),
Liu and Brockwell (1988), Chanda (1992), Liu (1992), Francq (1999), Terdik
(1999), Bibi and Oyet (2002). In those papers, probabilistic as well as statistical
properties such as stationarity, ergodicity, invertibility, existence of higher order
moments, central limit theorem, estimation problems including model identifica-
tion and finding suitable white noise are examined.
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General bilinear process of order p, g, m,! is defined by

14 q m 1
X = Z a; Xt + e+ ijet_j + Z Zbint_iet_j, (1.1)
i=1 j=1

=1 j=1

where e; is a sequence of independent and identically distributed (iid) random
variables.

As shown by Subba Rao and Gabr (1984), the bilinear model is particularly
attractive in modelling processes with sample paths of occasional sharp spikes
and when interactions between {X,} and {e;} are significant.

In this paper, we shall restrict ourselves to the so-called subdiagonal models
for which ¢ = 0 and b;; = 0 if ¢ < j. We aim at providing some simple easy-
to-verify conditions that simultaneously imply stationarity and exponential (-
mixing.

The question of the existence of a stationary solution for some classes of
bilinear models is discussed in details by Rao et al. (1983). [-mixing with a
geometric convergence rate of the bilinear models can be derived from geometric
ergodicity of the Markov process of its representation.

Pham (1985, 1986) gives a necessary and sufficient condition for existence of
a stationary solution, geometric ergodicity and §-mixing for the bilinear model.
But as shown in those papers, writing a general bilinear model into a bilinear
Markovian form is not an easy task and matrices involved in the representation
are in general quite complicated. Also, evaluating irreducibility for such a model
is far from easy task to check.

We begin by showing that subdiagonal bilinear model can be rewritten as a
case of generalized polynomial random coefficient autoregressive model (GRCA).
One of the advantages of such a technique is that it enables us to use the results
on GRCA models (see, Doukhan, 1994; Carrasco and Chen, 2002). We give
sufficient conditions for geometric ergodicity of the auxiliary Markov chain and
then derive strict stationarity and 3-mixing with exponential decay rate for given
process.

This paper is organized as follows. Section 2 gives terminologies and previous
results. Section 3 provides geometric ergodicity and [-mixing. In Section 4,
ARMA model with bilinear innovations is considered.
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2. PRELIMINARIES

Let {X::t=0,1,2...} be a discrete time Markov chain defined on R, kE>1
with time homogeneous n-step transition probabilities

P™(z,A) = P(X,€ A| Xo=1), € R¥, Ae B(R"),
where B(RF) is a Borel o-field on R*.

DEFINITION 1. A Markov chain {X;} is geometrically ergodic if there exists
some probability measure © on B(R*) and a positive real number r < 1 such that,
for every x,

r™|P™(z,.) = 7()|| = 0 as n— oo,

where || - || denotes the total variation norm.

DEFINITION 2. Let {X;} is a Markov process with invariant initial distribu-
tion w. Then {X;} is said to be stationary B-mizing (or absolutely regular) with
exponential decay rate if there exist 0 < r < 1 and ¢ > 0 such that

/Hp(n)(a?, Y —w()||7(dz) <er, n=1,2,...

REMARK 1. According to above Definitions 1 and 2, exponential G-mixing
and geometric ergodicity are equivalent for Markov processes.

REMARK 2. Recall that S-mixing is stronger than strong mixing. Therefore
geometrically ergodic Markov process accommodates limiting theorems such as
functional central limit theorem and the law of iterated logarithm for S-mixing
process and/or strong mixing process.

One of the most well-known condition used in establishing stationarity or
(geometric) ergodicity of a Markov chain is the Lyapounov-Foster drift condition
which is developed in a series papers by Tweedie and his associates (see, e.g.,
Meyn and Tweedie, 1993 and references therein).

Drift condition. There exists an extended real valued nonnegative measurable
function g with g(z) < oo for at least one z, such that for some constants b <
00, 0 < A <1 and a compact set K in B(RF),

/g(z)P(w,dz) < Ag(z) + bIk(z), (2.1)
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where I denotes the indicator function of K.
For the following Theorem 1, we suppose that X, is generated by

X = A(et)Xt_l + B(et), (22)

where each of A(e;) and B(e;) are matrix valued polynomial function and vector
valued polynomial function, respectively. Assume that the marginal distribution
of e; is absolutely continuous with respect to Lebesgue measure and the support
of e; contains an open set and zero. Also, e; is independent of o (X1, ..., X;—1).
Let p(A) denote the spectral radius of a matrix A. We shall need the following
theorem due to Doukhan (1994) (see also Carrasco and Chen, 2002) to obtain
our main results.

THEOREM 1. Consider the process X; in (2.2). Assume that p(A(0)) < 1,
the series Z,‘:’zl[ﬂf;éA(et_j)]B(et_k) converges almost surely and the sequence
H?;éA(et_j)m converges (as k — oo) to the 0 matriz almost surely for any x. If
the drift condition (2.1) holds, the process X, defined by (2.2) is Markov geomet-
rically ergodic and E[g(X:)] < co. Moreover if X is initialized from the invariant
distribution, then { X} is strictly stationary and B-mizing with exponential decay.

For further terminologies and results in Markov chain theory, we refer to Meyn
and Tweedie (1993).

3. GEOMETRIC ERGODICITY AND [(-MIXING

Consider the subdiagonal bilinear time series model given by

P m )
X = Z i Xe—i + e + Z Zbint—’iet—j; t=1,2,..., (3.1)
i=1

i=1 j=1

where p > I, b;; = 0 for ¢ < j and {e;} is an iid sequence of random variables
with finite second moment. :

Without loss of generality, we assume that p = m by taking ¢; =0 for i > p
and b;; = 0 for ¢ > m. Define

!
Y, = (Zt,t—p+1, Zitpries, Ly 1p-—pr1€4—1,---, Zt—l+1,t—p+16t—l+1) ) .(3-2)

where Zt—i,t—p+1 = (Xt—i7 Xt—i—l, cen 7Xt—p+1)7 1= 0, 1, ce ,l — 1
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Let

® b b b by b

J(p-1) 0 0 0 0 0

e, Iiet b~2€t i’v3€t 51\—/1615 glet
Jp-1)et 0 0 0 0
Aler) = 0 Jp-1) 0 0 0 0 )

0 0 Jp-2) 0 0 0

0 0 0 Jp-3) 0 0

0 0 0 0 coo Jpmgy 0

where

?: (¢1a¢27"'a¢p) € RP’
by = (b11,b21,...,bp1) € RP,
by = (boo, bsa, ..., bp2) € RP7L,

bi = (bu,brsvs, - -, byt) € RPHY, (3.3)

Ik is the k x k identity matrix and Jg,_;) is a (p—j) x (p~j +1) matrix defined
by

0
Joiy =\ Ip—gy ] i=12...,L (3.4)
0
Ble;) = (e,0,...,0,e2,0,...,0) is an r x 1 vector all of whose components are

zero except for the first and (p + 1)!* which are e; and e?, respectively. Here
r=(4+1)p—-1(l-1)/2 and A(e;) is an r x r matrix valued polynomial function.
Then ¥; in (3.2) can be rewritten as

Y't = A(et)Yt_l + B(et).

We make the following assumptions.

Condition C1. {e:} is a sequence of #d random variables with finite vari-
ance. The probability distribution of e; is absolutely continuous with respect to
Lebesgue measure. The support of e; is defined by its strictly positive density
and contains an open set and zero.
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Condition C2. 2, |¢s| + 1Y iey Z;'——q bij] < 1 with p = Eleq|.
For any matrix A = (a;;), |A| denotes the matrix (|a;;|).

LEMMA 1. Under the condition C2, p(A(0)) < 1 and p(E|A(e:)]) < 1.

PROOF. (1) Characteristic polynomial of A(0) is \? — @1 AP~ — o AP 2 — - . —
¢p = 0. Hence if 32, |#5] < 1, then p(A(0)) < 1.
(2) By direct calculation of the characteristic polynomial of E|A(e;)|, we can
show that p(BlA(er)]) < 1if Y7, |6l +u Ty They [ < L O

LEMMA 2. Under the condition C2, Zzozl[ﬂf;éA(et_j)]B(et_k) converges
almost surely and the sequence H?;éA(et_j)x converges to the 0 matriz (as k —
00) almost surely for any x € R.

PROOF. By definition, both the sequence of random matrices { A(e;)} and the
sequence of random vectors {B(e;)} are independent and A(e;—;) is independent
of B(e;_x) for k # j. Let A = E|A(e:)|, B = E|B(et)|. By above Lemma 1, we
have that p(A) < 1 and hence 3 4o, A¥ < co. Therefore > 50, E[H?;&A(et_j)]
Blei—) = Y52, A*B < oo and hence it follows that Y52 ; H?;éA(et_j)B(et_k) <
oo almost surely and H?;(%A(et_j)x converges almost surely to the zero matrix
(see Chen and An, 1998). O

THEOREM 2. Consider the process X; of (3.1). Suppose that conditions C1
and C2 hold. Then'Y; in (3.2) is geometrically ergodic and if Y; is starting with
the stationary distribution, {X;} in (3.1) is strictly stationary and B-mizing with
exponential decay rates.

PROOF. The main part of the proof is to define a test function which satisfies
the drift condition. For simplicity of notation, we assume that p = m = 3 and
¢i >0, bj; >0, 1<4,5,1 <3. The case p > 3 is entirely analogous, but involves
messier notation. In the case p = m = [ =3, define

!
Ye = (X¢, Xom1, Xi—2, Xeer, X166, Xe—268, Xe—1€4-1, Xs—2€s-1, Xy 2€t-2)".

O

Define a test function g : R® — R by

9
g(z1,...,29) = Z’yilmil +1,
i=1
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where nonnegative constants ~y;, ¢ = 1,2,...,9 are to be defined later.

Yi-1 =y = (z1, 72,23, u1,-..,up), Yz, given that Y;_; =y, is defined by
[Y: | Vi1 = o] = (X¢, 21, T2, Xser, Tr64, Taes, ur, uz, ug)’

with
3
Xi = ¢imi+ bius + barua + ba1ug + bagua + baus + bazue + €,
i=1

and hence we have that
E[Q(Yt; | Yio1 =1y

<) il + burfua| + -+ + baslug|) + vzle1]| + 3|z
i=1
3

+yap(Y ¢ilaal + buafua| + - -+ + bas|ug|)
=1

85

For

+ysulzi| + veplzal + yrlur| + vsluz) + Yolual + Mp + vaE(ef) + 1
3 6

<Y Al + > viealuwil + g+ uB(ef) + 1,
i=1 i=1

where

=71+ 2 + vadip + Vsp,
Vs = Vg2 + 3 + yadap + Yo,
Y3 = V193 + Yad3p,

v = Mbu + yabup + 7,

v5 = v1ba1 + yabarpt + 78,

¥§ = yibs1 + Yabsip,

vz = Y1b2a + yabaopt + o,

Ys = 71b32 + Yabs2p,

Yg = Y1baz + Yabs3p.

(3.5)

(3.
(3.
(3.

W w W W
© o N o

)
)
)
(3.9)
(3.10)
(3.11)
(3.12)
(3.13)
(3.14)

Now from the condition C2, we can choose a nonnegative constant p < 1 so

that

i=1 j=1

(3.15)
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Choose 1 > 0 arbitrarily. Let v7 = py;, 2 < i < 9 and solve the equation
(3.7)—(3.14). From simple calculation, we have that

1 1 1
Y2 = a(=¢2 + —¢3 + —5bs11), 3.16
( P 7 p ) (3.16)
a
3 = ;¢3, (3.17)
74 = ak, (3.18)
1 1
Y5 = a(;bm + ;632), (3.19)
a
Y6 = ~ba1, (3.20)
P ,
1 1
Y7 = a(;b22 + ;)Ebgg), (3.21)
a
V8 = 5532, (3.22)
a
Yo = —bss, (3.23)
P
where
_ !
a=7+Hy = 1— ik (3.24)

and k = by;/p + baa/p* + b3z/p>. Note that ; >0, 2 <4 <9 if 1 — pk > 0, that
is, u(b11/p + boa/p® + bs3/p?) < 1. From (3.6), (3.15), (3.16), (3.19) and (3.24),
we can drive that

T = né1+ 72 + Yadrp + s

7 1 1 1 1 1
= (¢1 + =2+ <03+ —borp + Sbs1p + —bzap

< pn. ' , (3.25)

Therefore, from (3.5)—(3.15) and (3.25),
E[g(Y)) | Yi-1=y] < pg(y) +¢, c=1+7p+uE(e) < oo

For the general case that p = m > 4, we may find positive v, 1 < i <
(p? + 3p)/2 if

G177 4 hap? P - by + 0P bun + PP (bar + baz) + pP 3 (b1 + baz + baa)
+ PP (bg1 + bag + bag + bag) + -+ (bpr +bpz + -+ byp)}
<,
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which follows from choice of p > 0 such that Y ¢ +p> > b <pP < p< 1.
By equivalence of norms in RF, for any given e > 0, there exist nonnegative
constants p’, p < p' <1 and M < oo such that

Elg(Yy) | Yier =y] < pgly) — ¢ ifye By,

and
sup Elg(Y:) | Yi-1 =y] < oo if y € By,
yeB§,
where By = {y | [ly|| < M}.
Applying Lemmas 1, 2 and Theorem 1 yields the geometric ergodicity of Y;.
If Yy is initialized from the invariant distribution, {X}} is strictly stationary and
B-mixing with exponential decay.

REMARK. In addition to the assumption (C1) and p(A(0)) < 1, we assume
that E[p(A(e))]® < 1 and E||B(e:)||* < oo for some even integer s > 2. Then
conclusions of Theorem 2 and E[||X¢||*] < oo follow (see, Proposition 3 in Car-
rasco and Chen, 2002).

4. ARMA MODELS wWiTH BILINEAR ERRORS

In this section, we consider an ARMA model with bilinear innovations and
derive a sufficient condition for strict stationarity and exponential 8-mixing.
Consider the model defined by

p q
Xy = Z i Xp—i + Z Ojei—; +¢€ and (4.1)
i=1 j=1
P Q
€ = € + Z Z bijet_iet__j. (4.2)
i=1 j=1

Assume that b;; =0 if i < j.

THEOREM 3. Consider the model defined by (4.1) and (4.2). If (O |¢:| +
D)( - > |bij| + 1) < 2, then there exists a strictly stationary solution of (4.1)-
(4.2) and X, with a stationary initial distribution is stationary B-mizing.

Proor. We may assume without loss of generality that p = ¢ = P = Q. For
simplicity of notation, we assume that ¢; > 0 and b;; > 0.
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We only consider the case that p = ¢ = P = (Q = 2. For this case, define
| Zs = (Xt, Xo—1, €, €11, €64, €164, € 1€¢-1) -
Then Z; = C(et)Zi—1 + D(e;) where C(e;) and D(e;) are given by
$1 ¢2 61 G2 b bar  ba

1 0 0 O 0 0 0

0 0 0 b b21 ba2
Cey=|0 0o 1 0 0o o o |,

0 0 0 buies borer booes

0 0 e O 0 0 0

o 0 o o0 1 0 O

and D(e;) = (e4,0,e:,0,€2,0,0). From simple calculation, we can obtain that
p(E|C(er)|) < 1if (1 + ¢2 + 1) ((br1 + b21 + ba2) + 1) < 2 with p = Eleq].
Define a test function g : R” — R by

7
g(mlix27 e )1:7) = Z’yllxil +1
i=1

with an appropriate choice of v; > 0 for i = 1,2, --,7 which is given below.
Now for given Z;_1 = z = (y1, y2, u1, U2, w1, w2, w3), we have that

Elg(Z;) | Ze-1 = 2]
= Elg(Y:, y1, €1, U1, €seq, ureg, 1) | Zy—1 = 2]
< (mér + )l + nd2lye] + (b1 +va + yeu)|ua|
+y102]uz| + (y1b11 + Y3b11 + Ysb11p + ¥7)|wi |
+(y1b21 + ¥3b21 + ysbor ) |wa] + (1baz + ¥3bao + ysboop)|ws|.  (4.3)

Choose p > 0 so that sy + z +y < p? < p < 1 with z = Y |¢| and
y=puY.Y |bij|- Then define ; > 0 arbitrarily and fix and let

1 1
Y2 = —¢2m1, Y4 = —bam,
p p

(b11p + ba2)(p* + pby + 62)
~ p2(p? — bripp — barp — baop)
o = (b11p + ba2)
p? — bripu — baap

71

(7 +73),
by
Y6 = 7(71 + 3 + Y544)s

b22
Y7 = 7(71 + 73 + Y5 14)-
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Then all 4; > 0, 1 < ¢ <7 and we can easily derive that
E[g(Z:) | Zio1 =20 < pg(z) + ¢, ¢ =mp+yu+rE(e) < oo,

and the drift condition (2.1) holds and hence the conclusion of Theorem 3 follows.
For the case that max{p, ¢, P,Q} > 3, the bottom line of the proof is the same
as above. u
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