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A SIMPLE VARIANCE ESTIMATOR IN
NONPARAMETRIC REGRESSION MODELS WITH
MULTIVARIATE PREDICTORS'

YounGg KYUNG LEE!, TAE YooN KiM? AND BYEONG U. PARK3

ABSTRACT

In this paper we propose a simple and computationally attractive differe-
nce-based variance estimator in nonparametric regression models with mul-
tivariate predictors. We show that the estimator achieves n~'/2 rate of
convergence for regression functions with only a first derivative when d, the
dimension of the predictor, is less than or equal to 4. When d > 4, the rate
turns out to be n=4/{4+4) under the first derivative condition for the regres-
sion functions. A numerical study suggests that the proposed estimator has
a good finite sample performance.
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1. INTRODUCTION

A homoscedastic regression problem of the form
Y. = m(Xl) +e¢ (1<i<n) (1.1)

is considered where m is an unknown regression function, the errors are indepen-
dent and identically distributed random variables with mean zero and variance
7, and the random design points X; are assumed to arise from independent re-
alizations of a distribution having a density f on IRY. Recently, estimation of
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the variance T has been getting attention because it is an essential part in con-
structing confidence intervals for m as well as for many other applications, such
as prediction, estimation of detection limits or immunoassay (see e.g., Carroll,
1988; Carroll and Ruppert, 1988). In this paper, we propose a simple variance
estimator which has a quite good rate of convergence for regression functions
with only a first derivative.

Various estimators of 7 have been proposed. Most of variance estimators are

quadratic in the vector of responses Y = (Y3,...,Y,)* and have the form:
YiDY
D= —— 1.
D= 4Dy (12)

for some symmetric matrix D that depends on X;. There are two classes of vari-
ance estimators. The first contains kernel based estimators (KBE) (e.g., Miiller
and Stadtmiiller, 1987; Hall and Carroll, 1989; Hall and Marron, 1990; Neumann,
1994). They are based on a sum of squared residuals from a nonparametric fit of
the regression function, and thus depend on a smoothing parameter. Typically,
kernel based regression estimators are linear fits of the form Y = HY, which
leads to the form (1.2) with D = (I — H)(I — H).

Difference-based estimators (DBE) are members of the second class. Here,
D is a symmetric n X n non-negative definite matrix which may depends on
the predictors X; but not on the responses Y;. Let X; € IR be ordered so that
X1 <--- < X,. A simple DBE suggested by Rice (1984) is given by

n

1
fpl= ——— E Y; - Yio)2
For equally spaced data, Gasser et al. (1986) proposed another DBE

n

Z (27Y; - Yie1 + 2—1Yi-—2)2 ,
=3

2

D2 = 30— 2)

which is based on second order differencing. Hall et al. (1990) considered a class
of DBE which includes 7p 1 and 7p 2. Let {d;} be a normalized contrast such that
>.d; =0 and Zd? =1 where d_,, and d,, are not zero for some nonnegative
integers m; and mp and d; = 0 for all j < —m; and j > my. Define r = m; +mg
which denotes the order of differencing. A general form of DBE considered by
Hall et al. (1990) is

2
n—mi

ma
ipe=n-n" 3 | X &Yy | =@-n)7YDY,

i=mo+1 \j=-m
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where the (4,4)®* entry of the matrix D is given by D;; = Z;:nn; 11 Br—idr—j-
Hall et al. (1990) determined the optimal difference sequences {d;} for each
r which achieves the minimal mean squared error within the class. They also
argued that as r increases the optimal difference sequence converges to a ‘spike’
of unit mass at one of the entries d;, and converges to zero everywhere else. Dette
et al. (1998) provided a higher order analysis of the mean squared error for the
class of DBE.

All of the aforementioned works focus on variance estimation in univariate
regression model. There are a few works dealing with estimating the variance in
multiple regression. Those include Hall et al. (1991), Kulasekera and Gallagher
(2002) and Spokoiny (2002). Hall et al. (1991) developed methods for estimating
the variance of white noise in a two-dimensional degraded signal. Kulasekera and
Gallagher (2002) extended DBE to the multivariate setting by introducing an
algorithm that orders the multivariate predictors. Spokoiny (2002) established
minimax-type results for a class of regression functions with second derivatives.

The main advantage of DBE over KBE is that they are computationally much
cheaper. Our aim in this paper is to provide a simple and computationally at-
tractive difference-based variance estimator which are applicable for multivariate
predictors. Our estimator 7 uses differences of paired responses whose concomi-
tant predictors are close to each other. It does not need a complicated procedure
of ordering multivariate predictors which the method of Kulasekera and Gal-
lagher (2002) is based on. When the regression function has continuous first
partial derivatives, we show 7 may be constructed so that as n grows

E(F—1)2 ~ cein! + cpn~8/(dH4), (1.3)

for some positive constants ¢; and ¢;. Thus, when d < 4, the estimator achieves
root-n rate. When d > 4, it estimates 7 at the rate n=%(4+4)  Although not
presented in this paper, it may be shown, following the arguments of Spokoiny
(2002), that one cannot obtain n~12 consistency under some conditions on the
first derivative when d > 4.

The finite sample performance of the proposed estimator is also investigated.
In a simulation study, the proposed estimator is compared with a KBE. It is
observed that the minimal mean squared errors of the proposed estimator at the
optimal tuning parameter values are better than those of the KBE for moderate
sample sizes. Furthermore, the mean squared error properties of the proposed
estimator turn out to be less sensitive to the choice of the tuning parameter than
those of the KBE.
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2. RESULTS

For a constant h > 0, let N}, denote the number of paired indices (3, j) such
that IXZ — jl < h, i.e.

Ny=> " "I(X — X5 < h),
i#j
where I(A) denotes the indicator. We consider the following variance estimator:
= (2Nn) 7)Y (Y = V) I(1Xi = Xj| < h).
i£j

We assume that m has a continuous first derivative m’, that the density f of X;
is continuous, and that [ f3(z)dz < co and [ |m/(z)|?f?(z)dz < co. Call these
conditions (A). Below, we present conditional mean squared error properties of
75, under these assumptions.

To state a theorem, define vp = [, dt and vz = [, t2dt =d! <1 [t|? dt
Also, define -

s ( [ 7@ dm)_l vz [ () £(0) o

-2
cy = (/ A(z) dac) (/ 3 (x) dx) Var(e?),
-1
cs = (Vo/f2(a:) dw) (Ee* +72).
THEOREM 1. Under the conditions (A), it follows that if h — 0 and n?h® —

o0 asn — oo then

E(#y — 7| X1, ..., Xn) = c1 h* + 0p(h?),
Var(, — 7|X1,..., Xa) = can™ L+ e3n 2h7 4 + 0p(n™! +n72R7Y).

From Theorem 1, it follows that our estimator has conditional mean squared
error given by

E{(#h—7)4X1,..., Xn} = Ehtcon ean 2h ™o, (n T +R4n 2T, (2.1)

If X;’s have a uniform distribution over a finite interval [a, b], then c; = Var(e?).
In general, c; > Var(e?) by Holder inequality.
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The asymptotically optimal A is

2 N —171/(d+4)
d v (Ee4+72)/f2(a:) da:{u% (/ ]m'(:c)|2f2(ac)d:c> n2} ] :

With this optimal hg, the conditional mean squared error at (2.1) equals, for
some positive constant cb,

ho =

E{(#n — 7} X1,..., Xn} = n 8@ Leon~t 4 op(nL 4 n78/(d+4)),

Thus, when d < 4, our estimator 7, achieves root-n rate. The rate deteriorates
for d > 4, in which case the accuracy is n~4/(4+4),

It may be proved by a standard technique (e.g., Brown and Kildea, 1978)
that 7, is asymptotically normally distributed. In fact, if R — 0 and n?h? — co

as n — oo then
27 —~d ~1/2 2 2
(czn_1 + c3n™h” ) (7 — T — c1h® + 0p(h?)) — N(0,1).

The condition that A — 0 and n?h?% — 0o as n — 0o is required for consistency
of the estimator. Note that our estimator is an average of the squared differences
of Y;’s for N}, different pairs of indices. The size of Nj, turns out to be O,(n2h?).
This should tend to infinity as sample size grows. Differences of m(X;)’s for pairs
of X;’s (within distance h) produces bias, thus h should tends to zero to make
the bias vanish as the sample size grows.

As for kernel based methods, we are not aware of any theoretical results in
the case of multivariate predictors. For the univariate case where d = 1, Hall
and Marron (1990) showed that the conditional mean squared error of their KBE
with bandwidth b is asymptotic to b** +n~! +n~2b~1 if m has k derivatives and
a k** order kernel is used. Under the same condition of Theorem 1, i.e., when
k = 1, this coincides with the result (2.1) up to constant factors. By an extension
of the arguments in Hall and Marron (1990) or those in Park et al. (2006), one
may show that under the condition of Theorem 1 the conditional mean squared
error of the KBE for general d admits the same asymptotic expansion as given
at (2.1).

A simulation study is conducted to assess the finite sample performance
of the proposed estimator. We compare the mean squared errors of the pro-
posed estimator and a KBE based on the Nadaraya-Watson smoother. For
the Nadaraya-Watson regression estimator we used the Gaussian product ker-
nel with single bandwidth. Two regression functions were considered. One is
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m1(z) = z1 + x3 + 23, and the other is ma(x) = 2% + x3x3. Other regression
functions were also considered, but we found the results were similar to those
with the two functions. The three-dimensional predictors were generated from
the uniform distribution on the unit cube [0, 1]3. We took 500 pseudo samples of
size n = 100 and 400.

. 2 3 =x2 4+ x2 =
m(x)=x, +xZ + X, n=100 m,(x)=X + X; X5, =100
0.8 0.8
A \
0.6 v 0.6 \
\ !
\ '
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v \
0.2 . 0.2 t
\
I~ =

-3 -2 -1 0 -3 -2 -1 [o]
fogh log h
m_(x)=x +2+ x3, n=400 m, (x)=)(2 +32 x, , N=400
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0 o — -
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FIGURE 1 The mean squared errors of the variance estimators as functions of the bandwidth,
based on 500 pseudo samples of size 100 and 400. Solid curves correspond to the proposed
estimator and the dot-dashed are for the KDE.

TABLE 1 Minimal mean squared errors of the variance estimators with their respective optimal
bandwidths, based on 500 pseudo samples of size 100 and 400.

Regression function | Sample size l Proposed I KDE ]
mi(x) n = 100 .0448 .0453
= + 2 + 23 n = 400 .0066 .0187
ma(z) n = 100 .0429 .0382
=3 + z3z3 n = 400 .0063 .0102

Figure 1 depicts the mean squared errors of the proposed estimator and the
KBE as functions of the bandwidth. The minimal mean squared errors of the two
estimators at their respective optimal bandwidths, as shown in Table 1, are very
close to each other when n = 100. However, when n = 400 the proposed estimator
has better mean squared error properties than the KBE. Furthermore, Figure 1
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suggests that the mean squared error properties of the proposed estimator are
less dependent on the choice of the bandwidth than those of the KDE.

3. PrRoOOF OF THEOREM 1

Define
By = (@Np) 7130 S {m(Xs) — m(X,) Y2 (X — X < ),
i#]
Sn = (2N 0D (e — ) I(1X: — X5 < h),
i#j
= (V)30 S (m(Xs) — m(X;) e — e)I(1X: — X;] < h).
i#]

Then, we obtain

Since E(e; — €2)% = 27, it follows that

E(%h - TIXla o 7Xn) = Bm (31)
Var(#, — 7| X1,...,Xn) = Var(Sp|X1,...,Xn) + Var(R, | X1,. .., X5)
+2 Cov(Sy, Ru|X1,. .., Xn)- (3.2)

We show that if A — 0 and n2h¢ — oo as n — oo then

B, =2 (uo [ 7@ dw)_l <V2 [ @k dz) B+ op(h2), (3.3)

Var(Sp| Xa, .., Xp) = ( / 2(z) da:>_2 ( / £3() dm) Var(e2) n-!
+<1/0 / () das>_1 (Be* 4 72) n~2hd

+op(n~t +n72p79), (3.4)
Var(Rp| X1, ..., Xn) = 0p(n~t +n72p79), (3.5)
Define

Ly = I(|1Xi — X3l < h), My = {m(X;) — m(X;)}H (| X; — X;] < h).
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Then, we can show

E@L, = by / F2(z) dz + o(h?), (3.6)
Eliplys = b2 / £3(z) dz + o(h24), (3.7)
Elohzhy = O(h%), (3.8)
EnsIizhiulis = O(h*?). (3.9)

Also, we obtain
EMiy M3 = O(h%+?), (3.10)
EM2, — ht+2y, / i (@) 2 f2(z) d + o(hH2),  (3.11)
EM{; = O(h4tY), (3.12)
EMZLM% = O(h?4), (3.13)
EMEM3Myy = O(R3TH), (3.14)
EMyaMisMiyMys = O(R*H). (3.15)

Since ENj, = n(n — 1)E12 and Var(Ny) = 2n(n — 1){EL2 — (EL2)?} + 4n(n —
1)(n — 2){E(I12513) — (EI12)?}, we have from (3.6)~(3.9)

Ny = n2hdy0/f2(x) dx + op(n?h?). (3.16)

Now, since E(2NyB,) = n(n — 1)EMZ, and Var(2N,B,,) = 2n(n — 1){EM$, —
(EM3Z)?} +4n(n—1)(n—2){ E(M}LME) — (EM%)?}, we have from (3.10)~(3.15)

2 NpBr = n2ht2y, / i () 2f2(2) d + o, (n2h4H). (3.17)

The proof of (3.3) is now completed by (3.16) and (3.17).
Next, we prove (3.4). Note that for i # 7 # k

Var{(e; — Ej)2} = 2(Ee‘11 + 7'2), Cov{(e; — 6j)2, (ei — ek)z} = Var(e%).
Thus,

Var(Sn| X1, ..., Xn) = (Bet + 7Nt + Var(€)N, 2D 0D LT (3.18)
i#£j#k



A SiMPLE VARIANCE ESTIMATOR IN NONPARAMETRIC 113

From (3.6)—(3.9) it can be seen that

Z Z ZIiink = n3h2dug/f3(a:) dz + op(n3h??)

itih
+0p { (Ph* + n*h* + nSpAd)/2} (3.19)

The formula (3.4) follows from (3.16), (3.18) and (3.19).
Finally, we prove (3.5). Since Var(e; —€;) = 27 and Cov(e; —€j, €, —€;) =T
for i # j # k, we have

Var(Ra|X1, ..., Xp) = 4TN,;2{Z YME+Y S ZMijMik}. (3.20)

i#] itk

It follows from (3.17) that ZZMZ = 2N, B, = O(n?h®*+2). Also, from (3.10)—
it
(3.15) we obtain

SO S MMy = E(Z 3 ZMijMik> + Op{Var(Z 3 ZMUM“C) Y 2}

ik ik ik
1/2
=0, (ns h2d+2> +0, { (ns R2d+4 | p4p3dtd | 5 h4d+4) }
This with (3.16) and (3.20) shows
Var(Rp| X1, ..., Xn) = O, (n—2h—d+2 + n—1h2).
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