DOI QR코드

DOI QR Code

Effect of γ-PGA (Poly-γ-Glutamic Acid) Supplement on Calcium Absorption and Bone Metabolism in Rats

γ-PGA(Poly-γ-glutamic acid) 보충이 흰쥐의 칼슘 흡수율 및 골대사에 미치는 영향

  • Lee, Min-Sook (R&D Center for Functional Foods, Institute of Food and Culture, Pulmuone Co. Ltd.) ;
  • Kang, Jung-Il (R&D Center for Functional Foods, Institute of Food and Culture, Pulmuone Co. Ltd.) ;
  • Kim, Hyun-Su (R&D Center for Functional Foods, Institute of Food and Culture, Pulmuone Co. Ltd.)
  • 이민숙 (풀무원 식문화연구원 기능성연구소) ;
  • 강정일 (풀무원 식문화연구원 기능성연구소) ;
  • 김현수 (풀무원 식문화연구원 기능성연구소)
  • Published : 2006.03.01

Abstract

This study was Conducted to investigate the effect of ${\gamma}-PGA\;({\gamma}-poly\;glutamic\;acid)$ on Ca absorption and bone metabolism in rats. Weaned 4-week old male rats were fed Ca-deficient diets for 3 weeks after the adjustment period. Rats were divided into 6 groups and were fed experimental diets for four weeks. Experimental groups were basal (Ca deficient), control (Ca diet: Ca 0.45%), CP1(Ca 0.45%+casein phosphopeptide 1%), PG1(Ca 0.45%+gamma poly glutamic acid 1%), CPG (Ca 0.45%+casein phosphopeptide 1%+gamma poly glutamic acid 1%) and PG3(Ca 0.45%+gamma poly glutamic acid 3%). Though daily Ca intake and food intake of experimental groups showed no significant difference that of control group. The values of fecal Ca excretion and urinary Ca excretion in groups fed ${\gamma}-PGA$ were significantly lower than that in tile control group. The values of Ca absorption in groups fed ${\gamma}-PGA$ were significantly higher than that in the control group. The levels of femur Ca in ${\gamma}-PGA$ supplemented group were significantly increased compared to the control group. Also, breaking force of femur in ${\gamma}-PGA$ supplemented group showed about 40% increase compared to the control group. These results show that ${\gamma}-PGA$ supplement could be helpful to increase Ca absorption as well as to intensify the femur strength and to increase the Ca content of femur in rats.

칼슘은 한국인에게 가장 부족되기 쉬운 영양소로 섭취만큼이나 흡수가 중요한 요인이 되는 미네랄이다. 최근 칼슘흡수 증진에 효과가 있는 소재로 주목받고 있는 폴리 감마글루탐산(${\gamma}-PGA;\;poly-{\gamma}-glutamic\;acid)$이 체내 칼슘흡수에 미치는 영향을 알아보기 위해 4주령된 수컷 흰쥐(Sprague Dawley, female rats)를 이용하여 3주간 칼슘결핍식이를 급여시켜 칼슘결핍을 유도 후에, ${\gamma}-PGA$ 보충식이를 4주간 급여하였다. 실험군은 칼슘결핍군(Ca free group), 칼슘보충군(칼슘1.2% 보충군, total Ca 0.45%), 칼슘과 CPPl% 보충군(칼슘1.2%+CPP1% 보충군), 칼슘과 PGA1% 보충군(칼슘1.2%+${\gamma}-PGA1%$ 보충군), 칼슘과 CP1%+PGA1% 보충군(칼슘1.2%+CPP1%+${\gamma}-PGA1%$ 보충군), 칼슘과 PGA3% 보충군(칼슘1.2%+$\gamma$-PGA3% 보충군)으로 구분하였다. 이때 ${\gamma}-PGA$의 효과를 검증하기 위해 ${\gamma}-PGA$와 칼슘흡수 기전이 유사하고 이미 효능이 알려져 있는 casein phosphopeptide 보충군을 실험군에 추가하였다. 식이섭취량은 칼슘결핍군이 다소 낮았으나 유의적인 차이는 없었으며 칼슘섭취량도 유의적 차이 없이 비슷한 수준을 보였다. 변 및 뇨중 칼슘 배설량은 칼슘만을 섭취한 대조군에 비해 ${\gamma}-PGA$보충군에서 유의적으로 낮았다(p<0.05). 칼슘흡수율 또한 그룹간의 유의적 차이를 보여 칼슘만을 섭취한 그룹에 비해 ${\gamma}-PGA$를 함께 보충한 그룹의 흡수율이 30%더 높은 경향을 보였으며 이는 이미 효능이 알려진 CPP보다 우수한 수준이었다. 골형성 지표인 혈중 ALP를 측정한 결과 대조군에 비해 ${\gamma}-PGA$보충군이 유의적으로(p<0.05) 낮았고, 혈중 칼슘농도는 항상성을 유지하며 그룹간의 유의적 차이 없이 비슷한 수준을 보였으며 , OHPr/Cre도 유의적 차이는 없었다. 뼈 중 칼슘함량 및 강도는 칼슘결핍군이 나머지군에 비해 유의하게(p<0.03) 낮았으며, 칼슘함량의 경우 칼슘만을 보충한 그룹에 비해 ${\gamma}-PGA$를 함께 보충한 그룹이 농도 의존적으로 높은 칼슘함량을 보였고(p<0.05), 골강도의 경우는 유의적 차이는 없었으나 ${\gamma}-PGA$를 함께 보충한 그룹이 농도 의존적으로 골강도가 높은 경향을 나타내었다. 결론적으로 칼슘결핍을 유발한 흰쥐 에 칼슘만을 보충시켰을 때보다 칼슘과 함께 ${\gamma}-PGA$를 함께 보충했을 경우, 칼슘흡수 증진 및 골대사에 긍정적으로 기여함을 확인할 수 있었다. 그러나 좀 더 명확한 효과 검증을 위해서는 차후 많은 개체수와 장기간의 식이를 통한 반복실험, ${\gamma}-PGA$섭취수준에 따른 추가실험이 진행되어야 할 것으로 생각된다.

Keywords

References

  1. Ministry of Health and Welfare. 1999. Report of the National Health․Nutrition Research
  2. Allen LH, RJ Wood. 1994. Calcium and phosphours. In Modem Nutrition in Health and Diease. 8th ed. Shils ME, Olson JA, Shike M, eds. Lea & Febiger, Philadelphia. p 144-163
  3. Rivilin RS. 1991. An update on calcium: applications for the 90's. Am J Clin Nutr 54 (1 Suppl): 177s-290s https://doi.org/10.1093/ajcn/54.1.177S
  4. McCarren DA. 1997. Role of adequate dietary calcium intake in the prevention and management of salt-selective hypertension. Am J Clin Nutr 65: 712-716 https://doi.org/10.1093/ajcn/65.2.712S
  5. Pansu D, Bellaton C, Bronner F. 1981. The effect of calcium intake on saturable and non-saturable components of duodenal calcium transport. Am J Physiol 240: G32-G37
  6. Bronner F. 1992. Current concepts of calcium absorption: an overview. J Nutr 122: 641-643 https://doi.org/10.1093/jn/122.suppl_3.641
  7. Recker RR, Bammi A, Barger-Lux J, Heaney RP. 1988. Calcium absorbability from milk products, an imitation milk, and calcium carbonate. Am J Clin Nutr 47: 93-95 https://doi.org/10.1093/ajcn/47.1.93
  8. Park C, Chol YH, Shin HJ, Poo H, Song JJ, Kim CJ, Sung MH. 2005. Effect of high-molecular-weight poly-$\gamma$-glu-tamic acid from Bacillus subtilis (chungkookjang) on Ca solubility and intestinal absorption. J Microbiol Biotechnol 15: 855-858
  9. Tanimoto H, Mori M, Motoki M, Torii K, Kadowaki M, Noguchi T. 2001. Natto mucilage containing poly-$\gamma$-glu-tamic acid increases soluble calcium in the rat small in-testine. Biosci Biotechnol Biochem 65: 516-521 https://doi.org/10.1271/bbb.65.516
  10. Aono R. 1987. Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125. Biochem J 245: 467-472 https://doi.org/10.1042/bj2450467
  11. Perez-Camero G, Congregado F, Bou JJ, Munoz-Guerra S. 1999. Biosynthesis and ultrasonic degradation of bacterial poly-$\gamma$-glutamic acid. Biotechnol Bioeng 63: 110-115 https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<110::AID-BIT11>3.0.CO;2-T
  12. Hahm JH, Lee TY, Lee JS, Park C, Sung MH, Poo H. 2004. Antitumor effect of poly-$\gamma$-glutamic acid by modulating cytokine pro-duction and NK cell activity. Abstract No. H003 presented at 2004 International Meeting of the Fed-eration of Korean Microbiological Societies, Seoul, Korea. Oct. 21-22
  13. Lee JS, Park C, Poo H, Kim CJ, Sung MH. 2004. Enhance-ment of immunogenicity for the target antigen expressed on the surface of lactic acid bacteria with poly-$\gamma$-glutamic acid. In proceedings of the 3rd Japan-Korea Joint Meeting on Molecular Display, Kobe, Japan. July 22. p 9-11
  14. Lee JS, Poo H, Kim CJ, Choi YH, Park C, Sung MH. 2004. Poly-gamma-glutamic acid: Biological characterization and its applications. Abstract No. P676 presented at 2004 Inter-national Symposium and Annual Meeting of Korean Society for Biotechnology and Bioengi-neering, Chungbuk, Korea
  15. Kind PRN, King EJ. 1954. Estimation of plasma phos-phatase by determination of hygrolyzed phenol with amino antipyrine. Am J Clin Pathol 24: 322-326
  16. Bergman IB, Loxley R. 1963. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal Chem 35: 1961-1965 https://doi.org/10.1021/ac60205a053
  17. Lee JG, Lim YS, Joo DS, Jeong IH. 2002. Effects of diet with sea tangle (Kjellemaniella crassifolia) on calcium ab-sorption, serum composition and feces in rats. J Kor Fish Soc 35: 601-607 https://doi.org/10.5657/kfas.2002.35.6.601
  18. Han IK, Park WK, Choi WW, Shin HH, Kim SW. 1989. A study on hormonal changes and bone densities in Korean menopausal women. J Korean Soc Endo 4: 21-26
  19. Yang SO, Yang SB, Kwon ST, Lee SY, Kim SB. 1999. The effects of dietary supplement including isoflavone on bone metab-olism in ovariectomized rats. J Korean Soc Bone Metabolism 6: 11-17
  20. Aloia JF, Cohr SH, Vaswani A, Yeh JK, Yuen K, Ellis K. 1985. Risk factors for postmenopausal osteoporosis. Am J Med 78: 95-100 https://doi.org/10.1016/0002-9343(85)90468-1
  21. Avioli LV. 1988. Calcium and phosphorus. In Modern Nutrition in Health and Disease. 7th ed. Goodhart RS, Shils ME, eds. Lea & Febiger, Philadelphia. p 142-158
  22. Watson RC, Grossman H, Meyers MA. 1994. Radiologic findings in nutritional disturbances. In Modern nutrition in health and disease. 8th ed. Shils ME, Olsom JA, Shike M, eds. Lea & Febiger, Philadelphia. p 861-908
  23. Thomas ML, Simmon DJ, Kidder L, Ibarra MJ. 1991. Calcium metabolism and bone mineralization in female rats fed diets marginally sufficient in calcium: effects of increased dietary calcium intake. Bone and Mineral 12: 1-14 https://doi.org/10.1016/0169-6009(91)90117-I
  24. Oh SH, Lee KH. 1996. The effect of combined estrogen/ calcium therapy on bone metabolism in ovariectomized rats. J Korean Soc Food Sci Nutr 25: 993-1005
  25. Natio H, Lee YS. 1980. Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. Br J Nutr 43: 457-467 https://doi.org/10.1079/BJN19800113
  26. Mykkanen HM, Wasserman RH. 1980. Enhanced absorp-tion of calcium by casein phosphopeptides in rachitic and normal chicks. J Nutr 110: 2141-2148 https://doi.org/10.1093/jn/110.11.2141
  27. Naito H, Kawakami A, Imamura T. 1972. In vivo formation of phosphopeptide with calcium-binding property in the small intestinal tract of the rat fed on casein. Agric Biol Chem 36: 409 https://doi.org/10.1271/bbb1961.36.409
  28. Lee YS, Natio H. 1982. Effect of lactose on calcium absorption enhanced y casein phosphopeptides in the rat small intestine. Korean J Nutr 15: 1-8
  29. Lee SW, Hwangbo S, Yang HJ, Nam MS, Yu JH, Chung CI. 2002. Studies on the calcium phosphopeptide in milk casein. Korean J Food Sci Ani Resour 22: 55-58
  30. Barger-Lux MJ, Heaney RP, Lanspa SJ, Healy JC, DeLuca HF. 1995. An investigation of sources of variation in cal-cium absorption efficiency. J Clin Endocrinol Metab 80: 406-411 https://doi.org/10.1210/jc.80.2.406
  31. Duflos C, Bellaton C, Pansu D, Bronner F. 1995. Calcium solubility intestinal sojourn time and paracellular permea-bility codetermine passive calcium absorption in rats. J Nutr 125: 2348-2355
  32. Horman A, Gallagher JC. 1977. Prospectivetrial of oestrogen and calcium in postmenopausal women. Br Med J 2: 789-792 https://doi.org/10.1136/bmj.2.6090.789
  33. Dull TA, Henneman PH. 1988. Urinary hydroxyproline as an index of collagen turnover in bone. New Engl Med 118: 1217
  34. Lee YS, Park MN, Kim EM. 1997. Effect of dietary calcium levels on peak bone mass formation in growing female rats. J Korean Soc Food Sci Nutr 26: 480-487
  35. Kalu DN, Liu CC, Hardin RR, Hollis BW. 1989. The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 127: 7-19
  36. Donahue HJ, Mazzeo RS, Horvath SM. 1988. Endurance training and bone loss in calcium deficient and ovariecto-mized rats. Metabolism 37: 741-744 https://doi.org/10.1016/0026-0495(88)90008-X
  37. Lee WT, Leung SS, Wang SH, Xu YC, Zeng WP, Lau J, Oppenheimer SJ, Cheng JC. 1994. Double-bind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium dite. Am J Clin Nutr 60: 744-750 https://doi.org/10.1093/ajcn/60.5.744
  38. Chan GM. 1991. Dietary calcium and bone mineral structure of children and adolescents. Am J Dis Child 145: 631-634

Cited by

  1. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20 vol.74, 2015, https://doi.org/10.1016/j.ijbiomac.2014.12.017
  2. Effects of poly-γ-glutamic acid on serum and brain concentrations of glutamate and GABA in diet-induced obese rats vol.4, pp.1, 2010, https://doi.org/10.4162/nrp.2010.4.1.23
  3. Bacillus subtilis Fermentation for Enhancement of Feed Nutritive Value of Soybean Meal vol.57, pp.2, 2014, https://doi.org/10.3839/jabc.2014.030
  4. Evaluation of Radical Scavenging Activity and Physical Properties of Textured Vegetable Protein Fermented by Solid Culture with Bacillus subtilis HA According to Fermentation Time vol.39, pp.6, 2010, https://doi.org/10.3746/jkfn.2010.39.6.872
  5. Production of Carrot Pomace Fortified with Mucilage, Fibrinolytic Enzyme and Probiotics by Solid-state Fermentation Using the Mixed Culture of Bacillus subtilis and Leuconostoc mesenteroides vol.14, pp.4, 2006, https://doi.org/10.3746/jfn.2009.14.4.335