Evaluation of Crossability, Seed Dormancy and Overwintering Ability in Glufosinate Ammonium-Resistant GM Rice and Their Hybrids with Non-GM and Weedy Rice

  • Lee, Seung-Yeob (Institute of Life Science and Natural Resources, Wonkwang University) ;
  • Kim, Min-Soo (Institute of Life Science and Natural Resources, Wonkwang University) ;
  • Kim, Hyo-Jin (Institute of Life Science and Natural Resources, Wonkwang University) ;
  • Han, Seong-Soo (Institute of Life Science and Natural Resources, Wonkwang University)
  • Published : 2006.03.01

Abstract

This study was conducted to investigate the crossability, seed dormancy and overwintering ability of rice plant in GM (glufosinate ammonium-resistant lines. Iksan 483 and Milyang 204) and non-GM (their parents) or red rice (Andongaengmi). Seed-setting rate was not significantly different between GM and non-GM rice varieties. Iksan 483 and Milyang 204 showed the similar level of seed germination rate from 30 to 50 days after heading as compared to non-GM rice varieties. After overwintering in paddy field, seed germination rate of GM and non-GM rice varieties ranged from 14.3 % to 57.6 % in dry soil condition, but there was no germination in wet-soil except red rice. The result in wet-soil condition may help to set up a strategy for reducing the risk of gene flow of transgene via dispersal of seeds of GM plants. The crossability, seed dormancy and seed overwintering of Iksan 483 and Milyang 204, herbicide resistant GM rice varieties, were not significantly different compared to non-GM rice varieties. The results might be helpful to reduce the risk of transgene dispersal from GM crop via seeds and pollens.

Keywords

References

  1. Anderson, J. A., M. E. Sorrells, and S. D. Tanksley. 1993. RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci. 33 : 453-459 https://doi.org/10.2135/cropsci1993.0011183X003300030008x
  2. Cai, H. W. and H. Morishima. 2000. Genomic regions affecting seed shattering and seed dormancy in rice. Theor. Appl. Genet. 100 : 840-846 https://doi.org/10.1007/s001220051360
  3. Datta, K., N. Baisakh, N. Oliva, L. Torrizo, E. Abrigo, J. Tan, M. Rai, S. Rehana, S. Al-Babili, P. Beyer, I. Potrykus, and S. K. Datta. 2003. Bioengineered 'golden' indica rice cultivars with ${\beta}$-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotech. J. 1 : 81-90 https://doi.org/10.1046/j.1467-7652.2003.00015.x
  4. Goto, F. T. Yoshihara, N. Shigemoto, S. Toki, and F. Takaiwa. 1999. Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotech. 17 : 282-286 https://doi.org/10.1038/7029
  5. James, C. 2004. Global status of commercialized biotech/GM crops: 2004. preview. ISAAA Briefs, No. 32. International Service for the Acquisition of Agri-Biotech Applications, Ithaca, New York, pp. 1-11
  6. Lavigne, C., E. K. Klein, and D. Couvet. 2002. Using seed purity data to estimate an average pollen mediated genetlow from crops to wild relatives. Theor. Appl. Genet. 104: 139-145 https://doi.org/10.1007/s001220200017
  7. Messeguer, J, C. Fogher, E. Guiderdoni, V. Marfa, M. M. Catala, G. Baldi, and E. Mele. 2001. Field assessments of geneflow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theor. Appl. Genet. 103: 115-1159
  8. Miura, K, S. Y. Lin, M. Yano, and T. Nagamine. 2002. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor. Appl. Genet. 104:981-986 https://doi.org/10.1007/s00122-002-0872-x
  9. Mohan Babu, R., A. Sajeena, K. Seetharaman, and M. S. Reddy. 2003. Advances in genetically engineered (transgenic) plants in pest management - an over view. Crop Prot. 22 : 1071-1086 https://doi.org/10.1016/S0261-2194(03)00142-X
  10. Noldin, J. 1998. Red Rice Situation and Management in the Americas. An international symposium on wild and weedy rices in agro-ecosystem, Asian Pacific Weed Science Society, pp. 36-41
  11. Oard, J., M. A. Cohn, S. Linscombe, D. Gealy, and K. Gravois. 2000. transgenic rice (Oryza sativa) and the weed, red rice (Oryza sativa). Plant Sci. 157 : 13-22 https://doi.org/10.1016/S0168-9452(00)00245-4
  12. Pantone, D. J. and J. B. Baker. 1991. Weed-crop competition models and response-surface analysis of red rice competition in cultivated rice: A review. Crop Sci. 31 : 1105-1110 https://doi.org/10.2135/cropsci1991.0011183X003100050003x
  13. Ramesh, S., D. Nagadhara, V. D. Reddy, and K. V. Rao. 2004. Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci. 166: 1077-1085 https://doi.org/10.1016/j.plantsci.2003.12.028
  14. RDA. Rural Development Administration of Korea. 1993. Standard investigation system for crops. 3rd. edition. RDA, Suweon, Korea. pp.603
  15. Seshu, D. V. and M. E. Sorells. 1986. Genetic studies on seed dormancy in rice. In: Rice genetics. IRRI, Philippines, pp. 369-382
  16. Takahashi, N. 1997. Inheritance of seed germination and dormancy. In: Matsuo, T., Y. Futsuhara, F. Kikuchi and H. Yamaguchi (eds), Science of rice plant. 3. Genetics, Food and Agriculture Polish Research Center, Tokyo. pp. 348-359
  17. Tu, J., G. Zhang, K. Datta, C. Xu, Y. He, Q. Zhang, G. S. Khush and S. K. Datta, 2000. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis dendotoxin. Nat. Biotech. 18 : 101-1104 https://doi.org/10.1038/71772
  18. Vasconcelos, M., K. Datta, N. Oliva, M. Khalekuzzaman, L. Torrizo, S. Krishnan, M. Oliveira, F. Goto and S. K. Datta. 2003. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 164: 371-378 https://doi.org/10.1016/S0168-9452(02)00421-1
  19. Wilkinson, M. J., J. Sweet and G. M. Poppy. 2003. Risk assessment of GM plants: avoiding gridlock? Trends Plant Sci. 8 : 208-212 https://doi.org/10.1016/S1360-1385(03)00057-8
  20. Ye, X., S. Al-Babili, A. Kloti, J. Zhang, P. Lucca, P. Beyer and L. Potrykus. 2000. Engineering the provitamin A $({\beta}-carotene)$ biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287 : 303-305 https://doi.org/10.1126/science.287.5451.303