Effect of organoclay on the dynamic properties of SBR compound reinforced with carbon black and silica

유기화 클레이의 첨가가 실리카 및 카본블랙를 함유한 SBR 복합체의 동적 특성에 미치는 영향

  • Son, M.J. (Department of Chemical Engineering, Pusan National University) ;
  • Kim, W. (Department of Chemical Engineering, Pusan National University)
  • Published : 2006.12.30

Abstract

SBR (styrene-butadiene rubber; 25 wt% of solid contents) nanocomposites reinforced with OLS(organically modified layered silicates) were manufactured via the latex method. Two types of OLS are prepared, i.e. dodecylamine (primary amine) modified montmorillonite (DA-MMT) and N, N-dimethyldodecylamine (tertiary amino) modified MMT (DDA-MMT). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to characterize the layer distance of OLS and the morphology of the nanocomposites. SBR nanocomposites reinforced with ternary phase filler (carbon black/silica/OLS) systems also manufactured. Dynamic mechanical thermal analysis (DMTA) was performed on these composites to determine the loss factor (tan $\delta$) over a range of temperature($-20^{\circ}C{\sim}80^{\circ}C$). The results showed that there was significant changes on the values or tan $\delta$ with the addition of small amount of the OLS. By increasing the contents of OLS, the values of tan $\delta$ at $0^{\circ}C$ increased but those of tan $\delta$ at $60^{\circ}C$ decreased with increasing OLS contents.

유기화 클레이(organically modified layered silicates)가 보강된 SBR 나노 복합체를 라텍스법(latex method)에 의해서 제조하였다. 유기화 MMT는 dodecylamine으로 유기화한 DA-MMT와 dimethyldodecylamine으로 유기화한 DDA-MMT의 두 가지를 제조하였다. 유기화 클레이의 층간거리와 분산도를 확인하기 위하여 XRD와 TEM촬영을 하였다 Na-MMT, DA-MMT, DDA-MMT의 XRD 회절 패턴을 분석한 결과 Na-MMT는 $2{\theta}=7.2^{\circ}$로써 층간거리가 $12.3{\AA}$, DA-MMT는 $2{\theta}=5.1^{\circ}$로 층간거리가 $17{\AA}$를 나타내었으며, DDA-MMT의 경우, 회절 피크는 $2{\theta}=4.8^{\circ}$로써. 층간거리는 $18.4{\AA}$으로 나타났다. 이는 DDA-MMT와 DA-MMT가 각각 5 phr 첨가된 SBR 나노 복합체의 TEM 결과에서도 확인할 수 있었다. SBR 나노 복합체에 filler system (carbon black/silica/OLS)을 적용 후 시편을 제조하였다. 제조된 시편의 동적 점탄성 평가 (DMTA)는 $-20^{\circ}C{\sim}80^{\circ}C$ 사이에서 이루어졌으며, loss factor (tan $\delta$)의 거동을 확인하였다. 그 결과, 타이어 트래드용 컴파운드를 대상으로 할 경우, 카본블랙과 실리카의 혼용비가 35:25일 때, 빗길 제동특성과 연비특성을 대변하는 $0^{\circ}C$$50{\sim}60^{\circ}C$에서의 tan $\delta$가 가장 우수함을 알 수 있었다. 또한 이 시스템에 실리카의 일정 부분을 DDA-MMT($0{\sim}10phr$)로 대체할 경우, $0^{\circ}C$의 tan $\delta$값은 높아지는 반면, $50{\sim}60^{\circ}C$의 tan $\delta$값은 감소하였다.

Keywords

References

  1. M. J. Wang, W. L. Patterson, 'A new generation reforcing agent for rubber', paper presented at the ACS Meeting, Anaheim, California, May 6, (1997)
  2. 정연채, '카본블랙과 실리카의 혼합사용', Elastomer, 20, 229 (1985)
  3. S. WolfT, 'Chemical Aspects of Rubber Reinforcement by Filler', Rubber Chem. Technol., 69, 325 (1996) https://doi.org/10.5254/1.3538376
  4. 박성수, 박병호, 송기찬, 김수경, '실리카 및 카본 블랙이 충전된 천연 고무 가황물에서 배합방법이 파열특성에 미치는 영향', Polymer(Korea), 24, 220 (2000)
  5. Y. Wang, L. Zhang, C. Tang, and D. Yu, 'Preparation and Characterization of Rubber Clay Nanocomposites', J. Appl. Polym. Sci., 78, 1879 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1879::AID-APP50>3.0.CO;2-1
  6. A. Okada, and A. Usuki, 'The Chemistry of Polymer-Clay Hybrids', Mater. Sci. Eng., 3, 109 (1995) https://doi.org/10.1016/0928-4931(95)00110-7
  7. Markus Ganter, Wolfram Gronski, Peter Reichert, and Rolf Mulhaupt, 'Rubber Nanocomposites: Morphology and Mechanical Properties of BR and SBR Vulcanizates Reinforced by Organophillic Layered Silicates', Rubber Chem. Technol., 74, 221 (2002)
  8. Jae-Young Lee, Hyung-Ryul Rim, Mi-Ja Shim, and Hong-Ki Lee, 'Characteristics of Natural Bentonite Used for Nanocomposites', J. Korean Ind Eng. Chem., 14, 769 (2003)
  9. Wang, Y. ; Zhang, H. ; Wu, Y. ; Yang, J. ; Zhang, L., 'Preparation and properties of natural rubber/ rectorite nanocornposites', European Polymer Journal 41, 11 (2005)
  10. R. A. Vaia, H. Ishii, and E. P. Giannelis, 'Synthesis and Properties of Two-dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates', Chem. Mater., 5, 1694 (1993) https://doi.org/10.1021/cm00036a004
  11. Payne, A. R.; Whitaker, R. E., 'Influence of Hysteresis On Tensile and Fatigue Failure in Rubbers', J. Appl Polym. Sci. 16, 1191 (1972) https://doi.org/10.1002/app.1972.070160513
  12. Donnet, J. B., 'Carbon Black properties and the Parallelism between Mechanical and Dielectric Behavior', Rubber Chem. Technol., 153, 47 (1998)
  13. Wang, M. J., 'Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates'. Rubber Chem. Technol., 71, 520 (1998) https://doi.org/10.5254/1.3538492
  14. Wang, M. J.; Tan. E. H.; Wolff, S., 'The role of the distance between filler aggregates in the dynamic properties of filled vulcanizates', Rubber. Chem. Technol., 66, 178 (1993) https://doi.org/10.5254/1.3538305
  15. Wang M. J., 'Improved elastomers through control of network chain-lengh distributions' Rubber Chem. Technol., 72, 470 (1999)
  16. N. Kobayashi, I. Furuta, H. Akrema, Y. Isono, 'The Comparison between Silica and Carbon Black Loaded Compounds as a Tire Tread in Time-Temperature Superposition of Tangent', PAPERS-AMERICAN CHEMICAL SOCIETY, DIVISION OF RUBBER CHEMISTRY, 154, 697 (1999)