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Abstract

Classical principal component analysis (PCA) can be formulated as finding the
linear subspace that best accommodates multidimensional data points in the sense
that the sum of squared residual distances is minimized. As alternatives to such
LS (least squares) fitting approach, we produce LMS (least median of squares)
and LTS (least trimmed squares)-type PCA by minimizing the median of squared
residual distances and the trimmed sum of squares, in a similar fashion to
Rousseeuw (1984)'s alternative approaches to LS linear regression. Proposed
methods adopt the data-driven optimization algorithm of Croux and Ruiz-Gazen
(1996, 2005) that is conceptually simple and computationally practical. Numerical
examples are given.

Keywords : Principal component analysis (PCA); Projection pursuit; Least squares
(LS); Least median of squares (LMS); Least trimmed squares (LTS).

1. Background and Aim of Study

Suppose that there are n data points z,,---,z,, each of which consists of p
(= 3) inter-correlated continuous measurements. Classical principal component
analysis (PCA) portrays high dimensional continuous data points on the lower
dimensional space. Because of its data visualizing function, PCA is favored by many
statisticians as major exploratory data analysis (EDA) tool.

As EDA tool, PCA can be formulated as follows (Lebart et al. 1984, Huh 1999). Let
v be a pX1 unit vector and consider linear projections of z;,--,z, onto v, so
that the projections provide one-dimensional display of p ~dimensional objects. In
doing so, it is desirable to find a unit vector v such that the sum of squared residual
distances is minimum. That 1is,

minimize (wr.t. v) Y, lz;, —('z;)v I? subject to v'v = 1. (1)

i=1
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Along the unit vector v, that solves (1), n objects are positioned respectively at

v x,,---,viz, . Subsequently, we focus on the residual vectors
z; —(vﬁwi)vl, 1=1,-,n,
which, we denote by z{",---,z{!), substitute for z,,-~,z, . Next, we try to find
another unit vector v that
minimize (wr.t. v) E Il xﬁl) — (vt mgl) v 1?2 subject to viv=1. (2)

i=1
On the subspace spanned by v, that solves (1) and another unit vector v, that
solves (2), n objects are projected at

(W, vh2y), o, Wz, vh 2,)
on the two-dimensional subspace. In that way, the lower dimensional display extends
to three or more dimensional subspace.

Quite clearly, least squares (LS) optimization formulated in (1) and (2) lacks
robustness. Therefore least median of squares (LMS) and/or least trimmed squares
(L'TS) optimization is more desirable particularly for exploratory data analysis (EDA)
purpose, as in linear regression (Rousseeuw, 1984).

The aim of this study is to build practical LMS and LTS-type principal component
analysis (PCA) algorithm for EDA. To avoid computational complications that is
inevitable in brute-force projection pursuit, we use data-driven approach to classical
PCA of Croux and Ruiz-Gazen (1996, 2005) and give partial justifications in Section
2. Subsequently, we propose LMS and LTS-type PCA algorithms and give a
numerical example in Section 3. Finally in Section 4, we conclude the paper with
remarks on the scalability of the proposed algorithms and the relationship with other
robust PCA techniques.

2. Data-driven Approach to LS-type PCA

For PCA, we assume that the nxXp data matrix X with z! as its ¢ th row is
(robustly) centered and scaled unless stated otherwise. It is well known that the
eigenvectors v, and v, of pXp symmetric matrix X‘ X /(n—1) corresponding to
the largest and second largest eigenvalues are the solutions of (1), (2) and so on.

We adopt the simple approach of Croux and Ruiz-Gazen (1996, 2005) that meets
the same problem. We call it by “Data-driven Least Squares (LS)-type” PCA
Algorithm (Others call it by C-R Algorithm):

Step 1: Treat normalized z,,---,z, as possible candidates for v, evaluate
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Moz, —@ha)/(@ha,)z, 12 for k=1,-,n (3)

i=1
and find the smallest one and corresponding index k;, from which we
obtain the first loading vector v; =gz, /Il z, Il .

Step 2 Replace z,,-,x, by residual vectors z\" =z, — (v]'z,) v}, i=1,-,n, to

form the new data matrix and go back to Step 1 to obtain the second index
k, and second loading vector v, =x§$) /1 xﬁl) . As result, one obtains
two—dimensional principal component display
(wita, vl ), Wz, vl z,).
Note that v; is orthogonal to v, but that score vectors
s;= W'z, v z,) and s, = (vt zy, vy T,)

may not be so.
Step 3: Repeat Step 2 when additional principal component dimension is needed.

As an illustration, we applied the classical PCA and the Data-driven LS-type PCA
to National Track Records dataset consisting of 55(=n) observations and 8(=p)
variables (Johnson and Wichern, 1992, p.393). All variables are inversely transformed
to mitigate distributional skewness. See <Figure 1> and <Figure 2> produced by
classical PCA and Data-driven LS-type PCA of inverse transformed data. The
left-side graph shows observation scores on first two principal axes, while the
right-side graph shows the loading coefficients for variables. In these figures,
observation points are labeled with "abbreviated Nations” and variable points are
labeled with "A”"-"G"” for 100m, 200m, 400m, 800m, 1.5Km, 5Km, 10Km and "M"” for
marathon. Differences between two figures are pretty small.

Strictly speaking, Data-driven LS-type PCA Algorithm results in suboptimal
solution of (1) and (2). However, we may expect that Data-driven LS-type PCA’s
solution appear closely to that of classical PCA, since the data points tends to be
clustered along principal directions. As partial verification, we executed a small
Monte Carlo study designed as follows.

Step 1. Generate n independent observations with p variables Z;,---,Z, such that
Zj NN(O’ .72) , J=1,-p
to form the n Xp data matrix Z.
Step 2@ Without any prior adjustment, calculate the first and the second eigenvectors
v, and vy, of Z'Z/n. Also, obtain v, and v, by Data-driven LS-type
PCA.
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<Figure 1> Classical PCA plots of National Track Records Data
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<Figure 2> Data-driven LS-type PCA plots of National Track Records Data

Step 3: Compute
. * . *
cosines.l = | viv; | and cosines2 = | vhuv, |
for closeness measures between two loading vectors of PC dimensions 1 and

2. The measures range from 0 (=far from close) to 1 (=completely close).

In Experiment 1, we set p=>5 and n =400/100/40. The 1,000 simulation results
are summarized in <Table 1>. For the case n = 400, the result is perfectly favorable
to our claim. But we should expect that the result worsens as n decreases. Even for
the case n = 40, however, the result seems to be fine for practical use.

In Experiment 2, we set p =10 and n = 400/100/40. The 1,000 simulation results
are summarized in <Table 2>. The case in which p =10 and n =40 is the worst.
The reason is obvious: we have only four observations per dimension (n/p=4).
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<Table 1> Simulation result for the case p =5.

cosines.1 cosines.2

400 average 0.992 sd 0.005 average 0.992 sd 0.006

100 average 0.983 sd 0.012 average 0.982 sd 0.014

40 average 0.971 sd 0.030 average 0.965 sd 0.035

<Table 2> Simulation result for the case p =10.

cosines.1 cosines.2

400 average 0.939 sd 0.054 average 0.922 sd 0.065
100 average 0.911 sd 0.068 average 0.875 sd 0.104
40 average 0.897 sd 0.086 average 0.837 sd 0.132

It

Even in that case, cosines.l is close to 0.9 on average. <Figure 3> shows the
distribution of simulation outcomes for the worst case (p =10 and n = 40).

In sum, we may conclude that the data-driven optimization works well, unless
n/p is too small (say less than 5).

Qur PCA algorithm proposed above is a modification of Hubert et al. (2002) and
Croux and Ruiz-Gazen (2005), of which the LS version could be written as the
maximization of the dispersion measures of principal component scores:

3o (ha)/ (ahzy) z, 1%, for k=1,--,n. (4)
i=1
Certainly, the minimization of (3) and the maximization of (4) are equivalent each
other when the sum of squares or the "mean” squares criterion is adopted, but they
are not so if the mean is replaced by median or if the sum is replaced by trimmed
sum. That motivates LMS and LTS-type versions, which we will develop in the
next section.
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<Figure 3> Simulation outcomes for the case p =10 and n =40.
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3. Data—-driven LMS and LTS-type PCA’s

We propose "Data-driven Least Median of Squares (LMS)-type” PCA algorithm,
that is same as Data-driven LS-type PCA with one exception: Replace (3) by

median{ | z; — (z} z,) /(@ z,) z, 1'% k=1,--,n ). (5)

Similarly, we propose "Data-driven Least Trimmed Squares (LTS)-type” PCA

algorithm, which is same as Data-driven LS-type PCA with one exception: Replace
(3) by

n—nh
Z Wz, — (ahz;)/ (2t ) ), )2 6)
i=1

where h is an integer between 0 and [n/2], where [m] is the largest integer less
than or equal to m . In this study, A is set equal to [n/4] or 25% of the sample
size, for balancing maximum breakdown level (50%) and full Gaussian efficiency in
the case of no contamination (0%). As in linear regression, we may expect that
Data-driven LMS-type PCA has the maximum breakdown property but lacks
efficiency and that Data-driven LTS-type PCA possesses the balance between
robustness and efficiency.

Our criteria (5) and (6) differ from that of Hubert et al. (2002) and Croux and
Ruiz-Gazen (2005). Their criterion is the maximization of robust dispersion measure
such as

Q, (s1,-,8,)=22219 ¢, {1s;—s; | ;i<jly, (7

P

where s, =v'x;,--,s, =v'z, are principal components scores, ¢, is a

n

small-sample correction factor converging to 1 as n increases,

We think that minimization of (5) and/or (6) is more appropriate, instead of
maximization of (7), since PCA can be viewed primarily as a dimensional reduction
technique.

Applied to the inversely transformed National Track Records data of Section 2,
Data~-driven LMS and LTS-type PCA vyield the same plot as that of Data-driven
LS-type PCA, that is <Figure 2>. Thus, for the National Track Records data,
different criteria of optimization (LS/LMS/LTS) do not affect the result. But this is
a rather exceptional case.

We applied Classical, Data-driven LS-type, LMS-type and LTS-type PCA to
Cars93 dataset which consists of 93 observations (=automobile makers/models) with
16 wvariables for various automobile attributes such as min-price "A”, price "B”,
max-price "C", mpg-city "D”, mpg-highway "E”, engine size "F", horsepower "G",
rpom "H", rev-per-mile "I", fuel-tank-capacity "], passengers "K”, length "L", wheel
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<Figure 5> Data-driven LS~type PCA plots of Cars93 data
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base "M", width "N”, turn-circle "0”, and weight "P”. The results are shown in
<Figures 4, 5, 6, 7>. One may see that the pictures in <Figures 4, 5, 7> are similar:
1) Economy small cars position in the left edge in scores plot, 2) large inexpensive
cars in the upper right corner, and 3) high—function expensive cars in the lower right
corner. In <Figure 6> of Data-driven LMS-type PCA, the automobile points runs in
curved band from the left end with economy small cars to the upper right end with
large expensive cars. The dataset and full names of automobile makers/models are
available from MASS library of R software (http://www.r-project.org).
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<Figure 6> Data-driven LMS-type PCA plots of Cars93 data
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<Figure 7> Data—driven LTS-type PCA plots of Cars93 data

4. Concluding Remark

The techniques of this study for PCA may be classified into projection-pursuit
methodology (Li and Chen, 1985). Alternative approach for robust PCA is based on
robust covariance estimation procedures such as Minimum volume ellipsoid (MVE)
and minimum covariance determinant (MCD) (Rousseeuw 1984, Rousseeuw and
Leroy 1987). Apparent difference between two methods is that the former is directly
focused on the reduction of dimensions into two, three or so, while the latter is
broadly targeted to full dimensional covariance property. For the case n < p, only
the former method works.
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In the case of data sets with large sample size n, computational burden required
for producing a data-driven PCA is quite moderate since the proposed algorithm
contains finite number of non—nested iterative loops of length n . For data sets with
extremely large n, one may further reduce the computational burden by sampling
subset of observations to derive principal axes.

References

[1] Croux, C., and Ruiz-Gazen, A. (1996). A fast algorithm for robust principal
components based on projection pursuit. COMPSTAT Proceedings in
Computational Statistics. Physica-Verlag, Heidelberg. 211-216.

[2] Croux, C., and Ruiz-Gazen, A. (2005). High breakdown estimators for principal
components: The projection-pursuit approach revisited. Journal of
Multivariate Analysis, Vol. 95, 206-266.

[3] Hubert, M., Rousseeuw, P.]., and Verboven, S. (2002). A fast method for robust
principal components with applications to chemometrics. Chemometrics
and Intelligent Laboratory Systems, Vol. 60, 101-111.

[4] Huh, MH. (1999). Quantification Methods for Multivariate Data. Freedom
Academy, Seoul. (Written in Korean)

[5] Johnson, R.A. and Wichern, D.W. (1992) Applied Multivariate Statistical Analysis
(Third Edition). Prentice Hall, Englewood Cliffs.

[6] Lebart, L., Morineau, A., and Warwick, K. (1984). Multivariate Descriptive
Statistical Analysis. Wiley, New York.

[71 Li, G. and Chen, Z. (1985). Projection-pursuit approach to robust dispersion
matrices and principal components: primary theory and Monte Carlo.
Journal of the American Statistical Association, Vol. 80, 759-766.

[8] Rousseeuw, P.J. (1984). Least median of squares regression. Journal of the
American Statistical Association, Vol. 79, 871-880.

[9] Rousseeuw, P.J. and Leroy, AM. (1987). Robust Regression and Outlier
Detection. Wiley, New York.

[Received March 2006, Accepted April 2006]



