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On the Distribution and Its Properties of the Sum of a
Normal and a Doubly Truncated Normal

Hea-Jung Kim?D

Abstract

This paper proposes a class of distributions which is useful in making
inferences about the sum of values from a normal and a doubly truncated normal
distribution. It is seen that the class is associated with the conditional distributions
of truncated bivariate normal. The salient features of the class are mathematical
tractability and strict inclusion of the normal and the skew-normal laws. Further
it includes a shape parameter, to some extent, controls the index of skewness so
that the class of distributions will prove useful in other contexts. Necessary
theories involved in deriving the class of distributions are provided and some
properties of the class are also studied.
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1. Introduction

Azzalini (1985) and Henze (1986) worked on the skew-normal (written SN()))
distribution, a class of distributions including the standard normal, but with an
extra parameter (—oco <A< o0) to regulate skewness. A probabilistic
représentation of the distribution is given in terms of normal and half normal
laws:
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where Z, and Z, be independent standard normal variables. The distribution is

1Z, | ~ SN(\), (1.1

useful to modeling random phenomena which have heavier tails than the normal
as well as some skewness that appears in screening problems and regression
problems with skewed error structure. We refer to Arnold et al. (1993), Chen, Dey
and Shao (1999), and Kim (2002) for the applications of the distribution to those
problems. Various extensions of the SAN(\) distribution have been given in the
literatures: In one direction, Diciccio and Monti (2004) and Ma and Genton (2004),
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among others, tried to find more flexible distributions that cope with prevalent
deviations from normality. In the other direction, multivariate extensions of the
distribution have been developed by Azzalini and Valle (1996) and Branco and Dey
(2001), among others.

The purpose of the present paper is to extend the SN(\) distribution in terms
of yet other direction. This proposes a class of distributions that accounts for the
sum of a normal and a doubly truncated normal distributions, that is the
distributions of the form Z= ¢, V+c¢, W, ), where ¢, and ¢, are any real values,

V~ Ny, 1), and Wy, ~ TNy (1, 7), a truncated N(u, 75) with respective
lower and upper truncation points e¢ and b. Such an extension is potentially
relevant for practical applications, since in data analysis there are a few
distributions available to dealing with the sum (or ratio) of values from a normal
and a doubly truncated normal distribution. Moreover, the distribution of a variable
Z of the form Z= ¢, V+c, W, ;) arises frequently in the theory of nonparametric

statistics. We discuss examples of the nonparametric statistics in Section 4.
Necessary theories involved in deriving the class of distributions is provided and
some properties of the class is also studied.

2. The Class of Distributions

This section proposes a class of distributions of the sum of a normal and a
doubly truncated normal distributions by use of the conditional truncated bivariate
normal distribution.

Suppose f is the density function of a bivariate normal random variable with
mean vector = (8, , 6,)" covariance matrix £ = (0;;), o;; =0}, with correlation p.
Suppose that (X, ¥) has joint density

9z, y)=f(z,y)/[Pw®))—b(ula)] , —0<z<oja<y<bd 2.1
where u(a)=(a—0,)/0y, ub)=(b-6,)/0,, &(- ) is the df of a standard normal
variable, and a and b are real constants that are the lower and upper truncation
points for Y, respectively. Clearly, (X, Y) has a doubly truncated bivariate normal
distribution. By direct integration one obtains the density of Z=Xl|la< ¥Y<b
given by
¢ (u(2))[@ A\ u(d) = Aul(z)) — (A ula) — Au(z))]

0, [0 (u (b)) — & (ula))] ’

where u(z)=(2-0,)/0,, A=p/V1—p*, A\, =X/p and ¢(-) is the pdf of the
standard normal variable. The following lemma gives a relation between the

hy(z) = —w<ai<w (22

conditional distribution of a truncated bivariate normal and the sum of a normal
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and a doubly truncated normal distributions.

Lemma 1. Let V~ N(u, 71) and W~ N(u, 73) be independent random variables
and (X, Y) is a bivariate normal random variable with mean vector 8= (6, ,0,)
and covariance £, = (0;), 0; =07 with 8, = chu” 8, =y, 08 = Z‘,c, 7, 05 =
i=1 i=1

and p=cy0y/0,. Then for any real values ¢, and c, with ¢; = 0, the distribution
of Z=¢ V+c, W, 1s equivalent to the conditional distribution of X given
a< Y<b,

Z=c V+te,Woyn=Xla<¥Y<b (2.3)
where W, ;) ~ TNi,.p)(us.73), @ truncated N(u, 73) with respective lower and

upper truncation points e and b.

Proof. Let X=¢,V+c¢,W and Y= W. Then (X, Y) is a bivariate normal random
variable with mean vector 6, and covariance matrix X, Since V and W are

independent, the distribution of X conditionally on a< Y <b equals that of
91 V+ Co VI/((I. b)*

From now on, for convenience, we shall denote

2
= Ecz‘ﬂn 0, = piz, 07 = EC Tis 02 7'2, =cyop/oy, A=p/V1=p", A =) p,

u(z)=(2—-6,)/0,, u(a)=(a—92)/02 and u(b) = (b—0,)/0,.

Under the notations, Lemma 1 leads to the following definition.

Definition 1. Suppose V~ N(u, 73) and W,
random variables. Then distribution of Z= ¢, V+e¢, W, with the probability

~ TN, ) (uy. 72) are independent

{a.b)
density function (2.2) is denoted by NTj,, (¢, . po. 7. 75), Where c=(cy,cy).

The definition and Lemma 1 imply that the distribution function(df) of Z
variable with N7\, (¢, p; p, 7. 7,) distribution is the same as the conditional df
of the form P(X < z|la< Y<b) where {X,Y) is a bivariate normal with the
mean vector 6, and covariance matrix X, Thus the df of Z is

L(u(z),ula)ip) = L{ulz),ulb).p)
D(ud)—o(ula)) ’

where Llc,d,p)=P(V, >¢, V, >d) is the orthant probability of the standard

bivariate normal variable (V;, V;). Computing methods that evaluate Llc,d,p)

Fylz)=1- — 00 < z< oo, (2.4)
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have been given by Donnelly (1973) and Joe (1995), among others. Definition 1
also reveals the structure of the class of NT,; (¢, py, pty 7, 7o) distributions and

indicates the kind of departure form the normality. Furthermore, it provides
one-for-one method of generating a random variable Z with density (2.2). For
generating the truncated normal variable W, ,, the one-for-one method by

Devroye (1986) may be used. Now we will state some interesting properties for
the NT(,(c, g po, 7, 7) distribution as well as the associate results.

Property 1. Let U(Z)=(Z2-6,)/0,, where Z~ NT,,, (¢, s ptp 71, 7,). Then
U(Z) ~ NT,, ;) (c(r), 0,0, 1, 1), (25)

where c(r) = (¢, (7),¢, (7)) with ¢ (7) =¢;7/ 20272 and ¢, (1) = c,1y/ 2027'2

i=1 i=1

anda, = (a— py)/7, and b, = (b— p,)/ 7.

Property 2. For Z~ NT, (¢, g piy 71, 7), if ¢, =0 and ¢, =1Z~ TN, ;) (us.73)
while ¢, =1 and ¢, =0 reduces to Z~ N(u, 7).

Property 3. If Z~ NTy, (e, gy, pto, 71, 73), then Z=6,+0,U, where U~ SN(A).

The pdf of Z is
hy(2) =20 (2))®(Mu(z))/o, for —o0 < 2 < 0. (2.6)

Corollary 1. Let ¥V and W be independent standard normal random variables, and

let ¢,(A\)=1/vV1+2? and ¢,(A\)=X/V1+A?. Then

1 A
v+ Wiaw) ~ N (e(2); 0,0, 1, 1), 2.7)
Vi e Men = Ml
where ¢(X) = (¢; (), ¢, (N)).

=

Proof. Setting u, = 4y =0 and 7, =7, =1, we have the result from Lemma 1.

Property 4. NT w)(c()),0,0,1,1) distribution is equivalent to SN(A)

distribution.

Property 5. If Z~ NT(,,(c()),0,0,1,1) and Z; is an independent N(0, 1)
random variable, then the distribution of (Z+Z,)/vV2 is Z~ NTplc 0,0,1,1),

where ¢, =1/vV1+X? and ¢, =AM/ V21 +2A?).
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Corollary 2. If Wis a N(0, 1) random variable then, for any real A and g,

L(=B8/V1+)2, a, p)— L(—= B/ Y1+ X2, b, p)

()9 (2.8)

B[O\ W) +B)] =

where p=A/V1+A%.

Proof. Let V~ N(0, 1) independently of W and let W, , = U. Then
_ 1 /‘b/‘Au+B ~ 2 —u?2
E[¢(AU+,B)]_ 27r(d5(b)-—d5(a)) J_. e e dvdu

=P(V-AU<)=1-P(Z<—-B/V1+)),
where Z~ NT,,(c(X),0,0,1,1) random variable by Corollary 1. Thus the df

in (2.4) gives the result.

Corollary 2 immediately gives the following results for W~ N(0,1) random
variable: Upon setting a=— o0 and b= oo, we have, for any real A and f,

E@OW+8)] =88/ V1+A%). (2.9)

The expectation was derived by a different method (see, for instance, Zacks
1981, pp.53-54). When a=0 and b= oo, (2.8) yields

ElaNWI+8)] =8B/ V1+ X )+2T(8/V1+ A2, \), (2.10)
for any real A and B, where T¥{c, d), ¢>0, d> 0, is the function which gives the
integral of the standard bivariate density over the right side region bounded by
lines z=¢, y=0, and y=dz in the (z,y) plane(see, Azzalini 1985, for the
properties of the function). When V and W are independent standard normal
variables, 7= V/|W| has a standard Cauchy distribution. From this fact, we see
that the df of 7 can be expressed as Fy(t)= E[@HWI)] by (2.10), where

ElotlwD]=®0)+2700, t) = 1/2+tan™ /.

3. Moments
3.1 Moment Generating Function

To compute the moments of the NTi,, (¢, py. po 7y, 7) distribution, it suffices to
compute the moments of U(Z)=(Z—6,)/c,. From Property 1, we see that U(Z)

has the density

du(2))[@Nb, — Aulz))— d(Na, — dulz))]
g(u(z)) = GEOEIN) , —oo<u(z)<o, (31

where a; = (a— py)/ 75, by = (b—py)/79, A=cyry/cy7y and A, = Ec */(eymy)
i=1
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Theorem 1. Let Z~ NT,, (¢, py, iy, 71, 75), then the moment generating function of

/2 &(a, — pt)— &b, — pt)
¢ &(b,) — B(ay)

My @)= for —oo <t < oo, (3.2)

2
where p= A/ V1+ M N =c,m/ ] 3,27
i=1
Proof. Considering the pdf (3.1), we have My (t) written as

e U102 IR

- Ver [&(by)—(a,)]
Using the transformation u{z) = w(z)+¢, one finds
t%/2
My»@)= N [@(eb o] (El®\ by — A= AW(Z2))] - E[®(Aja, — M- AW(2)]),

3.2 Moments of the Distribution

Naturally, the moments of U(Z)=(Z-6,)/c, can be obtained by using the

moment generating function differentiation. For example:

P3,)—d(a,)
Unfortunately, for higher moments this rapidly becomes tedious. An alternative
procedure makes use of the fact that
Ed;[xkﬂqﬁ(w)] = (k+1)z"¢(z)— 2" 20 (z), for k=—1,0,1,2,3,..., (3.3)
yields the following result.

Under the distribution (3.1), the relation (3.3) and integrating by parts gives the

ElU(2)] = dMU(Z)(t)/dt ]t:() =

following moments.
El(k+1)U(2)f - U(2)**?]

f {k+ Du(2)f = u(2)" 2} (u () {S(\b, — Aulz)) — B(Na, — Mulz)dulz)

N &(b,)— o(a,)

b YE[W+ b, [FF! — E[W+ Aa,|Ft?
— P{¢( 1) [ k+11] ¢(a1) [ 1] } for k>—1, (3.4)

A He(b,) - d(ay)}

where W~ N{(0,1). By setting k=—1,0,1 and applying (2.9), we obtain three
expressions, which my be solved to yield the first three moments of U(Z). Higher
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moments could be found similarly. One obtains

o(by)— play)
- pgp(bl)—gp(al) ’
b1¢(b1 )— a1¢(a1)

®(b,)—b(a,)
/—7[(3 - P2 + b102)¢(b1 )= (38— PQ + ‘1192)¢(‘11 )]
& (bl ) - ¢(a1 ) ’

By using the Binomial expansion, one can see that the general formula for the

ElU(2)] =

ElU(2)’)=1-p°

ElU(2)*] =

moments of Z~ NT,,) (¢, py. pha. 7. T5) 1

k
ElZ*) = 2(’;) 0¥~ ie] ElU(2)]. (35)

j=0
When 6, =0, E[Z"]=0"E[U(Z)"]. We recall the functions ay(a, b;) and o,(a, b;)
studied by Sugiura and Gombi (1985). For real values of a; and b,(a; < b)),
as(a; b;) and a,(a; b,) give respective skewness and kurtosis of doubly truncated
standard normal distribution. Here a, and b, denote the left and right truncation

points of the standard normal distribution. Using these functions and the above
moments, we have the following resuit.

Theorem 2. For Z~ NT.; {c, uy ps. 7. 75), the skewness(the standardized central

moment) and kurtosis of the distribution are

= /73 (51/182 )3/203 (ap b] ) (36)
and a;={3(1—p*) + p'Blaylay, b)) + 62 (1 — )8, }/ B2, (3.7)
respectively, where p= ¢,/ Ec (a— )/ 13, by = (b= o)/,

_ a,¢(a;) = b (b;) play)— (b)) |’
51"[” o(a, )~ 5(b,) ( 3(a,)— qﬁ(b))}

_ 2 a;¢(ay) —byp(b,) #la,)— (b))
ﬂZ—l_p{ @(al)—é(bl) +( (a,)— Db ))}

a

Proof. From Property 1, we see that «; and «, of Z distribution is the same as

those of U(Z \/_1—_ V+pW, s, distribution, where ¥V and W are independent
standard normal variables. From the above moments, Var(U(Z))=pf3,. Therefore,
some algebra using the fact that Var(W(aLbl)) =g, and E| Wi, ,,1)] = (¢(b;)— p(ay)
/[@(b,)—®(a;)] (see, for example, Johnson et al. 1994, pp.156-158), gives the

result.
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Corollary 3. For Z~ NT(,;(c, puy pp 7, 73), the skewness depends on the
following cases: (i) If la;l<b,, the distribution of Z variable is skewed to the
right(the left) when p> 0(p <0). (ii) If la; | > b,, the distribution is skewed to the
right(the left) when p<0(p>0). (ii) If la;|=5, for a, =0, the distribution is
symmetric, where

2

ay = (a—pp)/ 79, by = (b—p,)/ 7, and p=cyry/ 4| D, 372 .

i=1
Proof. It is obvious that as(a; b;) >0 for la,| < b,, asla; b,) <0 for la;|> b, and
as(a; b;) =0 for la;|=b,. This fact and (3.6) immediately gives the result.

The class of NT, (¢, y py 7, 7) distribution includes well-known skew-
normal distribution, SN(6, o, A), by Azzalini (1985). SN(#, o, \) distributions is
equivalent toN T, o)(c, py, pt2, 71. 73) as given in Property 3.

From (35) and (36), one finds the moments of Z~ SN(0, o, \) E[Z]=
0, +0,pV2/r, Var(Z)=o2(1—2p*/n), and ay=4/7—1)V2/7 p*(1— 2p2/7r)73/2.
These values of Z~ SN(GLO’L/\) agree with those given in Ammold et al. (1993).
See Azzalini (1985) and Henze (1986) for the other properties of the SN(#, o, \)

distribution.

4. Applications
4.1. Nonparametric Statistics

The distribution N7, (c, . po. 7y, 1) of a variate Z= ¢, V4+c, W, arises
frequently in the theory of nonparametric statistics, where V~ N(g, 77) and

Wiy ~ TN ) (s 73) With a = 0. Let ¢; =1 and ¢, =—c. Then the distribution

function of the ratio of normal and truncated normal can be directly obtained from
that of Z variate, ie. P(Z< 0)= P(V/ W, < c). Further assume that V and W

are standard normals, and a=0 and b= co. Then
P(Z<0)=1/24+7 tan lc, (4.1)
the distribution function of a standard Cauchy distribution(see, for instance,
Johnson et al. 1994). In (4.1), if we set ¢y =—c=—p,/y/1—pZ,
P(Z<0)=2P(V,<0,V,<0)=1/2+7 'sin" !p, (4.2)
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by the df of NT{g.)(c, 0,0, 1,1) variable in (5), where (V;, ;) is the standard
bivariate normal variable with correlation p.. Thus (4.2) gives a simple derivation
of the joint probability P(V, <0, V, < 0)(see Johnson and Kotz (1972) for the
direct derivation that uses a complicated double integration).

The probability F,(0)=P(Z<0) of Z~ NTj)lc,0,0,1,1) leads to the
following applications to the theory of nonparametric statistics. For example, let
(X}, Y;) and (X,, Y;) be independent identically distributed bivariate normal
variables with variances o% and o} and correlation p. Then Kendall's measure of
association, which may be defined as

r=2P[(X, - X;)(V,— ¥;)>0]—1,
can be written as 7=4P[(X,— X;)//20% <0, (Y,— ¥})/y/20% <0]-1
=2F, (0)—1=(2/m)sin""p
by (4.2), where Z, ~ NT(y (¢, 0,0,1,1) with e= (1, —p/V1—p?). Thus 7=0 if
and only if p=0. That is, we have the important relationship that r=0 if and
only if X and Y are independent when sampling from a bivariate normal
population. Another example occurs in the setting of the two-way layout.

Hollander (1967) proposed a test statistic that is a sum of Wilcoxon signed rank
statistics to detect H;:F, = F, =---= F},, where at least one of these inequality

is strict, when the null hypothesis is H,:F;= F (unknown), j=1,.,k. The
variance of the asymptotic distribution of his statistic may be written as

0 =12P(X, - X,— X;+ X, <0, X, — X;— X;+ X; <0)-3,
where X|,---,X; are independent random variables whose continuous df is F. If
X,,--,X; represent a random sample from a univariate normal distribution with
variance o%, then (X, —X,—X;+X,)/(20x) and (X, - X;— X;+X;)/(20,) are
bivariate normally distributed with zero means, unit variances, and covariance 1/4.
Consequently, o% = 6FZK(O)— 3=(6/m)sin”'(1/4), where Z; ~ NT(y .)(c, 0,0, 1, 1)

with ¢= (1, —1/v15). These two examples show that, if one uses (4.2), the
values of 7 and qu can be directly obtained, avoiding the complicated double

integration.

4.2. Sum of Values from a Normal and a Truncated Normal

Suppose an item which one makes has, among others, two parts which are
assembled additively with regard to length. The length of both parts are normally
distributed but, before assembly, one of the parts is subject to an inspection which
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removes all individuals below a specified length. As an example, suppose that X
comes from a normal distribution with a mean of 100 and standard deviation of 6,
and Y comes from a normal distribution with a mean 50 with a standard
deviation of 3, but with the restriction that Y > 44. How can we find the chance
that X+ Y is equal to or less than a given value, say 1387 This problem was
originally answered by Weinstein(1964) and three correspondents regarding to
Weinstein(1964) have suggested other methods to get the same answer. The
method presented here uses the df (2.4) of NT, ;) (c, py po 7, ) distribution as a
simple alternative method to this problem. From definition 1, we see that X+ ¥V ~
NT4.00) (e, 100, 50, 6,3) with e=(1,1), so that 6, =150, 6, =50, o, = V45,

0,=3, and p=3/v45. Thus using (24), we see that F(138)=1—
L(—1.7889,— 2.4472, p)/®(2) = .03276, and this probability is the same as the
Weinstein's answer. When the parameters of X and Y distributions are unknown,
the probability #(138) can be approximately calculated by using the maximum
likelihood estimates of the parameters. See Johnson et al. (1994) and references
therein for the estimation of the truncated normal parameters. When the restriction
of Y in the form of a< Y<b, then X+ Y~ NT,,(c 100, 50, 6,3) with
c=(1,1). Thus F(138) is immediate from (2.4) if values of a and b are given.

5. Conclusion

This paper has proposed a class of the sum of a normal and a doubly truncated
normal, denoted by NTi,, (¢, py, py 7 7). The properties of the class is studied
and two immediate applications of the class are given.

As given by (2.3), the special feature of the class is that it gives rich family of
parametric density functions that allow a continuous variation from normality to
nonnormality. Therefore the class of distribution is potentially relevant for practical
application, especially for the analysis of skewed data as implied by Corollary 3.
This, in turn, raises the estimation problem of N7, (¢, py py 7 7) distribution
based on a skewed data. A study pertaining to the application is an interesting
research topic and it is left as a future study of interest.
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