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Abstract

In bioassay, the response curve is usually assumed monotone increasing, but its
exact form is unknown, so it is very difficult to select the proper functional form
for the parametric model. Therefore, we should probably use the nonparametric
regression model rather than the parametric model unless we have at least the
partial information about the true response curve. However, it is well known that
the nonparametric regression estimate is not necessarily monotone. Therefore the
monotonizing transformation technique is of course required. In this paper, we
compare the finite sample properties of the monotone transformation methods
which can be applied to the local linear quasi-likelihood response curve estimate.

Keywords : Local linear quasi-likelihood estimate; Monotone nonparametric
estimate; Response curve.

1. Introduction

In bioassay, different concentrations of a chemical compound are applied to
experimental animals, and the all-or-none reaction of the animals are then
recorded. For example, in pharmacology the effective action of a drug or vaccine
is treated by an animal experiment, where the deaths or other all-or-none
reactions of the animals are recorded after exposure to the drug at various levels.

Let z; be the dose level for the ith subject. If the ith subject reacts at z;, then
the binary response variable Y, is encoded by ¥, =1, and if no reaction, then
Y, =0. We assume that

P(Y,=1X,=z;)=plz,)=1—-P{Y, = 01X, = z,), i=1,.,n. (11

Here the function p( -+ ) denotes the response curve and we further assume that
p is strictly monotone increasing. The statistical aim is the estimation of the
response curve.

There are two main approaches for the estimation of the response curve. One is

1) This work was supported by the Hanshin University Research Grant in 2006.
2) Professor, Department of Statistics, Hanshin University, Korea.
E-mail @ drpark@hs.ackr



274 Dongryeon Park

the parametric approach and the other is the nonparametric approach. It is well
known that the convergence rate of the mean squared error for the parametric
estimator is O(n™!) if the true model follows the assumed one, whereas the
corresponding rate for the nonparametric estimator is usually Oln™?% for some
number ¢< (0,1). However, if an incorrect parametric model is used, then the
mean squared error for the parametric estimator does not even converge to zero,
so the nonparametric estimator is much better than the parametric one in this
case.

In many literature of bioassay, it has been pointed out that biological
mechanisms of a drug action are usually so complicated that the form of the
response curve is completely unknown, so the selection of the proper functional
form for the parametric estimator is not an easy task. For this reason, numerous
authors have proposed estimating the response curve nonparametrically.
Kappenman (1987) proposed nonparametric dose response curve estimation
procedure which is based on an estimator first proposed by Copas (1983). But his
main interest is the use of it for the estimation of the ED50. The ED100« is the
dose level at which 100a% of the subjects react, so it is defined as
ED100a=p '(a).

Miiller and Schmitt (1988) proposed a kernel estimator for the dose response
curve. Their estimator is just Gasser and Miiller kernel estimator with binary
response variable. It is known that the local polynomial regression estimator has
several more appealing features than the traditional kernel regression estimators.
The better performance near boundaries is one of them (Fan, 1992). Park (1999)
considered the local linear regression estimator as the response curve estimator
and compared the finite sample performance with Miiller and Schmitt’s kernel
response curve estimator. However, these estimators ignore the binary nature of
the response, so they have some problems as the estimator of P(Y=1X=2z).
The obvious one is that the fitted curve is not guaranteed to lie in the interval
(0,1). To overcome these difficulties, a generalization of the weighting mechanism
is needed. Fan, Heckman, and Wand (1995) proposed the locally weighted
quasi-likelihood estimators in one-parameter exponential family. Park and Park
(2006) considered the estimation problem of ED100a and compared the finite
sample performance of parametric and nonparametric estimator. They chose the
local linear quasi-likelihood estimator as the nonparametric estimator and the logit
model as the parametric estimator.

Nonparametric response curve estimate is not necessarily monotone, especially in
the small sample situation. Therefore the monotonizing transformation technique is
of course required. There are several monotonizing transformation techniques for
the nonparametric regression discussed in the literature. The most widely used
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method for getting isotonic regression is the Pool Adjacent Violators Algorithm
(PAVA). Friedman and Tibshirani (1984) recommended first smoothing and then
isotonizing the nonparametric estimate by the PAVA. Mukerjee (1988) suggested
the reverse sequence. Mammen (1991) derived theoretical results for both
approaches. Kappenman (1987) proposed the monotone nonparametric regression
estimation procedure by controlling the bandwidth. Recently Dette, Neumeyer, and
Pilz (2003) proposed using the inverse of a density estimate from the estimated
curve to obtain a monotone estimate of the regression function in a general
nonparametric regression model.

These transformation techniques might change the shape of the estimated
response curve dramatically in the small sample situation, so our aim here is to
compare the finite sample properties of the monotone transformation methods
which can be applied to the local linear quasi-likelihood estimator. In this paper,
we consider the method in Friedman and Tibshirani (1984), the one in
Kappenman (1987), and the one in Dette, Neumeyer, and Pilz (2003, 2005). These
three methods produce the estimates which are asymptotically first order
equivalent, so it is worthy to compare their finite sample properties. In fact, Dette
and Pilz (2004) compared the finite sample properties of their method with the
PAVA in the continuous response variable regression model and argued that their
method has the better performance. We want to make sure that their method is
still competitive in the response curve estimation problem.

In Section 2 we review three monotone nonparametric estimates briefly. In
Section 3 we report the results of a simulation study to show the finite sample
properties of three estimators. We present a summary of our findings in Section 4.

2. Three monotone nonparametric estimators

Consider the binary response model (1.1), where Yi,...,Y, are assumed to be

n

independent and the dose response curve p is assumed to be strictly increasing
and pe C*[0,1]).
In the parametric generalized linear model it is usual to model a transformation
of the regression function F(Y|X=z)=p(z) as linear and the model is given by
77(37):,80+,B1w=9(P(33)) (2.1
where ¢ is the link function. There are many practical circumstances in which
even though the full likelihood is unknown, one can specify the relationship
between the mean and variance (Fan, Heckman, and Wand, 1995). Suppose the
conditional variance is modeled as Var(Y|X=z)= Vip(z)) for some specific
function V. In this case estimation of the mean can be achieved by replacing the
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conditional log-likelihood by a quasi-likelihood function Q(p(z),y) which satisfies
9 _y-w
P Qw,y) V) (2.2)

and estimating 3, and £, by maximizing the quasi-likelihood .

3 Qg™ (B + BX), V). 2.3)

i=1
Since we deal with binary response, V(p)=p(l—p) and in this case the
quasi-likelihood method coincides with the Bernoulli log-likelihood method.
Fan, Heckman, and Wand (1995) proposed the local quasi-likelihood using kernel
weights, which is given by

.
3 0le G+ 6, - ). V) K | 2

i=1

where h is the bandwidth and K is the kernel function. Maximizing (2.4) with

(2.4)

respect to G, and B, leads to the maximum local linear quasi-likelihood estimate
n(zh) =3, (2.5)
and the local linear quasi-likelihood response curve estimate can be computed by
applying the inverse link function
plz;h) = g~ Hnlash)). (2.6)
The local linear quasi-likelihood estimator ﬁ(w;h) has very nice properties (Fan,
Heckman, and Wand 1995), so we would like to use p(z;h) as our response curve
estimator. In the small sample situation, however, ﬁ(m;h) is not necessarily
monotone, so the monotonizing transformation is of course required. There are
several monotonizing transformation techniques discussed in the literature, and we
need the methods which can be applied to p(z;kh). Among others, we consider the
method in Friedman and Tibshirani (1984), the one in Kappenman (1987), and the
one in Dette, Neumeyer, and Pilz (2005).
The method in Friedman and Tibshirani (1984) can be summarized as follows.

Suppose we have a set of n points {(z,plz,))...,(z,,p(z,))} where

z, <z, <<z, and p(z) is the local linear quasi-likelihood estimate. The

3

problem is to find {p(z,),...,p(z,)} to minimize E(ﬁ(wi)—i(a@i)y subject to the
i=1

monotone restriction p(z;) < p(z,) < ... < p(z,). Such a solution exists and can

be obtained from the PAVA. The basic idea of the PAVA is the following.

Starting with p(z,), we move to the right and stop if the pair (ﬁ(m,-),ﬁ(miﬂ))

violates the monotone restriction, that is, p(z;) > p(z,,,). We pool p(z;) and

p(z;,,) by replacing them with their average. Call this average
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plz;)=p(z,4,) = (plz,)+ plz,,))/2. We then move to the left to make sure that
plz,_ ) < pla;). If not, we pool plz,_,) with p(z;) and plz,.,), replacing all
three with their average. We continue to the left until the monotone requirement

is satisfied, then proceed again to the right. This process of pooling the first
violator and back-averaging is continued until we reach the right edge. The

solution at each z;, f)(:ci), are then given by the last average assigned to the
point at z;, We denote this estimate as pplz). There is one thing we can notice
about pp(z): if p(z;)'s are already monotone, then the PAVA reproduces the
original data, so pplz;) = plz,), Vi.

The method in Kappenman (1987) is rather simple. Suppose the local linear

quasi-likelihood estimate ﬁ(m,-;h) is not monotone. Then it is quite cleat that there

exists a value h, such that p(z;h) is monotone as long as h > h,. This is true
because the local linear estimate converges to a straight line as h goes to infinity.
The monotone local linear quasi-likelihood estimates is then defined by
p(z;hy),i=1,._.,n. We denote this estimate as p,(z).

Dette, Neumeyer, and Pilz (2005) proposed a method for the estimation of the
effective dose level curve, p '(a) using the general framework developed in their
earlier work (Dette, Neumeyer, and Pilz 2003) in the context of estimating a

monotone regression function. Let 13(1/ N) denote the local linear quasi-likelihood
response curve estimator at the point i/N, i=1,...,N with the kernel function K,

and the bandwidth h,.. It is not necessary that the number N coincides with the

sample size n, particularly if n is small. Then they define the estimator of the
effective dose level curve as

~—1 1 N f” ];(Z/N)*-u

pr (@)= N ; _mKd( . du 2.7

The kernels K, and K, are assumed to be symmetric with compact support, say

1

[-1,1], and h, and h, are corresponding bandwidths converging to 0 with

increasing sample size n. They also assume that K, is two times continuously

differentiable and positive. Because the kernel A, is positive, the estimate ﬁ;l(a)

is obviously 1isotonic. Therefore the monotone estimate of the response curve,

p,(z) is simply obtained by reflection of ﬁ;l(a) at the line a=z.

3. Finite sample properties

3.1 Models and evaluation
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Mammen (1991) showed that pp(z) is asymptotically equivalent with the
unconstraint estimator 13(3:) in the first order. Dette, Neumeyer, and Pilz (2003)
also showed that p,(z) exhibits the same first order asymptotic behavior as the
unconstraint estimator p(z). Therefore three monotone estimator, pp(z), p,(z),
and p xl{z) are asymptotically equivalent, so it is of interest to compare their finite

sample properties for estimating different styles of the response curve.
As the true response curve, we used the following 8 models:

1. The logit model, p,(z)= [1+exp(5—15z)] !
2. The skewed logit model, p,(z)=[1+exp(5—10z)]"*
3. The complementary log-log model, p;(z)=1-—exp[—exp(—5+8z)]
4. The normal mixture model, p,{z)= 0.5¢((x —0.3)/0.05)+ 0.5&((z — 0.7)/0.05)
5. The normal mixture model, py(z)= 0.3¢((z—0.3)/0.05)+0.78((z — 0.7) /0.05)
6. The Weibull model, pg(z)=1—exp[— (152)""]
7. The piece-wise linear model,
2z ifo<x<0.3
pxwz{mu+o@ifu33x<&8
x if08<z<1

8. The piece-wise constant model,

( )2{0.2 if0<z<05
Ps\T) =108 if05<z<1

The model p,(z) to ps(z) are the most widely used models for the binary data
and their shapes are different from each other. The model p,(z) is a symmetric
sigmoid curve, and p,(x) and p,(z) are non-symmetric sigmoid curves, and p,(z)
is a symmetric non-sigmoid curve with three inflection points, and p;(z) is a
non-symmetric non-sigmoid curve with three inflection points, and pg(z) is a

non-symmetric strictly concave curve. Both p;(z) and pg(z) were included since

they are not an element of C?%(0,1]) which is an interesting case because we
assume p < C*([0,1]).

The design points z;’s for each model were determined by Uniform(0,1) pseudo
random numbers. The sample sizes under consideration were n = 20,50,100. Dette
and Pilz (2004) considered n=50 and n=80 cases only, so we actually
considered more various circumstances. For the generation of the binary responses,
Uniform(0,1) pseudo random numbers were constructed again and compared with
p(z;) for the respective models.
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The local linear quasi-likelihood estimate, p(z) was computed by R function

locfit (Loader, 1999) in the locfit package. The bandwidth for ﬁ(x) was chosen by
the generalized cross validation method, which was done by R function gcv in the
locfit package. An Epanechnikov kernel was used for the kernel function.

The density regression estimate, p,(z) was computed by R function monreg in
the monreg package. For both K, and X, the Epanechnikov kernel was used.
The bandwidth h, was also chosen by the generalized cross validation method.

For the bandwidth h,, Dette, Neumeyer, and Pilz (2005) recommended the use of
hy=h2, so we just followed it. For the number N in (2.7) we used N=101.

To compare the performance of each estimator, the Monte Carlo mean integrated
squared error (MISE) was computed as the average of

/01(15* (z) —p(a:))de (2.8)

over m = 2000 simulation samples where p.(z) denotes one of three monotone

estimates. The Monte Carlo integrated squared bias (ISB) was also computed as
1 -—
[ (@)~ pa)ds (29)
0

where p.(z) is the average of p.«(z) over m = 2000 simulation samples.
To support the wvalidity of our simulation results we have to estimate the
standard error of our MISE estimates. Let M, denote the integrated squared error

of ith simulation sample and let M denote the average of M, over m = 2000. The
the standard error of the MISE estimates can be estimated by

1 m —\2
SE= \/mz(M,.— M) (2.10)

i=1

A rough approximation to the relative error in each MISE estimate could then be

obtained using 2X SE/ M, and in our simulation, relative errors in each MISE
estimate were estimated to be at most 5%, so they are not significant factors in
interpreting the simulation results.

3.2 Comparison

Simulation results are reported in <Table 1> which contains the Monte Carlo
MISE and ISB of three monotone estimates for each model. We can notice that

px(z) has much smaller MISE than other two monotone estimators in most cases.
For p,(z), ps(z), and pg(z), pplz) has smaller MISE than p,(z) at n=100 case

only. Therefore in terms of MISE, it turns out that p,(z) is superior to both
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pplz) and p,(z). We also can notice that except the case of p,(z) with n= 20,

pp(z) has much smaller ISB for all cases. Therefore in terms of ISB, pp(z)

performs much bettef than other two monotone estimators.

<Table 1> MISE and ISB of three monotone
estimates

MISE ISB

n Z;K(x) I;P(fﬂ) I;J(-’E) I;K(x) ]313(93) 1;1(27)
20 0.0126 0.0170 0.0346 0.0002 0.0002 0.0046
j2 50 0.0059 0.0068 0.0182 1.9e-5 4.7e-5 7.1e—4
100 | 0.0030 0.0034 0.0144 5.0e-6 1.3e-5 1.6e-3
20 0.0136 0.0255 0.0356 0.0002 0.0005 0.0022
P2 50 0.0064 0.0092 0.0187 9.8e-5 7.5e-5 6.5e-4
100 | 0.0030 0.0035 0.0133 8.3e-5 5.8e-5 1.5e-3
20 0.0144 0.0200 0.0356 0.0009 0.0003 0.0024
D3 50 0.0064 0.0080 0.0166 0.0003 0.0002 0.0005
100 | 0.0034 0.0038 0.0108 0.0002 0.0001 0.0008
20 0.0206 0.0302 0.0376 0.0071 0.0053 0.0057
Dy 50 0.0117 0.0117 0.0186 0.0057 0.0033 0.0045
100 0.0074 0.0065 0.0104 0.0043 0.0026 0.0034
20 0.0203 0.0272 0.0390 0.0077 0.0037 0.0069
Ds 50 0.0109 0.0112 0.0185 0.0052 0.0028 0.0044
100 0.0070 0.0061 0.0107 0.0039 0.0022 0.0031
20 0.0176 0.0226 0.0234 0.0039 0.0030 0.0053
Dy 50 0.0093 0.0110 0.0157 0.0022 0.0016 0.0031
100 | 0.0063 0.0066 0.0156 0.0024 0.0017 0.0038
20 0.0241 0.0337 0.0382 0.0051 0.0044 0.0091
o 50 0.0114 0.0131 0.0277 0.0030 0.0020 0.0105
100 | 0.0066 0.0072 0.0184 0.0022 0.0014 0.0063
20 0.0345 0.0389 0.0600 0.0157 0.0098 0.0282
Dg 50 0.0246 0.0220 0.0482 0.0168 0.0097 0.0293
100 | 0.0214 0.0157 0.0333 0.0172 0.0088 0.0193

The finite sample properties of p /(@) is rather disappointing. Its values of MISE
and ISB are not even close to the values of its competitors. In fact, we didn't
expect such a poor performance of ;5 ;(z) as the estimator of p(z), because Dette,
Neumeyer, and Pilz (2005) showed that for the estimation of p~ '(a) problem,
p; (a) is competitive with the method based on the PAVA by the simulation

study. Therefore it is worthwhile to investigate the reason why [) ;(z) has the

poor finite sample properties and we think that the <Figure 1> gives us the clue.
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<Figure 1> Estimated dose response curves
for typical data set of the model p,(z)

In <Figure 1>, the solid line represents the true response curve which is the
logit model, p,{z). The dashed line represents the local linear quasi-likelihood
estimate, p(z). Since p(z) is already monotone, both pg(z) and pplz) are
represented by the dashed lines, too. The dotted line represents p,(z). We can
notice that even though p(z) is monotone, p,(z) and p(z) are not the same, and
we believe that this is one of the undesirable properties of p,(z). In <Figure 1>,
p(z) is constructed by the bandwidth »=0.35 and as we can see in <Figure 2>,
the GCV score for the data set in <Figure 1> is minimized at h = 0.35. Therefore
p(z) in <Figure 1> can be considered as the "optimal’ nonparametric estimate for
the given data set, and in this point of view p ;(x) should reproduce the original
monotone nonparametric estimate, but this is not the case.

Another problem of p,{z) is that it is not guaranteed to lie in the interval
(0,1). In fact, we can notice that p,(z) <0 for z < 0.08 and p,(x)>1 for

z = 0.81 in <Figure 1>. We believe that this is the crucial problem for the
estimator of the response curve.
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We showed the problems of p,(z) only for the case of p,(z) in <Figure 1>,

but just the same problems were observed at every other models.

GCV score
0.450 0.452 0.454
| 1
o]
[}

0.448
1
[e]
[0}
Q

0.446
L
o]

0.2 0.3 04 05 08 0.7 0.8
bandwidth

<Figure 2> Generalized cross validation plot
for the data set in <Figure 1>

4. Conclusion

In bioassay, the response curve is usually assumed to be monotone increasing,
but its exact form is unknown, so it is very difficult to select the proper
functional form for the parametric model. Therefore, we should probably use the
nonparametric regression model rather than the parametric model unless we have
at least the partial information about the true response curve. However, the
disadvantage of nonparametric regression is that the nonparametric regression
estimate is not necessarily monotone, especially in the small sample situation.
Therefore the monotonizing transformation technique is of course required.

A Monte Carlo study was done under various circumstances to compare the
performance of the existing monotonizing transformation methods. In terms of the

MISE, pg(z) is turned out the superior method, whereas in terms of the ISB,
P p(z) is. Even though Dette, Neumeyer, and Pilz (2005) strongly recommended the"
use of p,(z), it turned out that the performance of p,(x) is very poor. To

improve the performance of 13 ,{z) as the response curve estimator, we believe that

two problems pointed out in the previous section have to be resolved.
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