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Count Five Statistics Using Trimmed Mean
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Abstract

There are many statistical methods of testing the equality of two population
variances. Among them, the well-known ZF test is very sensitive to the normality
assumption. Several other tests that do not assume normality have been proposed,
but these tests usually need tables of critical values or software for hypotheses
testing. McGrath and Yeh (2005) suggested a quick and compact Count Five test
requiring only the calculation of the number of extreme points. Since the Count
Five test uses only extreme values, this discards some information from the
samples, often resulting in a degradation in power. In this paper, an alternative
Count Five test using the trimmed mean is proposed and its properties are
discussed for some distributions and normal mixtures.
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1. Introduction

In this paper, we discuss the procedures that can be used for testing the
equality of two population variances. The well-known F test statistic is commonly
used for testing this hypothesis. However, the F test has the disadvantage that it
is extremely sensitive to the normality assumption. Moore and McCabe (2003)
discussed the assumption of the F test and warned against its use. McClave,
Benson, and Sincich (2005) mentioned the sensitivity of the F test and suggested
using an alternative test proposed by Levene (1960), and modified by Brown and
Forsythe (1974). Ott and Longnecker (2001) discussed the modified Levene's test
and extended it for the purpose of testing the equality of three or more variances.

Most alternatives to the F test are rank-based, including those proposed by
Mood (1954), Siegel and Tukey (1960), Ansari and Bradley (1960), Klotz (1962),
Fligner and Killeen (1976), and Conover (1980). More recently, Hall and
Padmanabhan (1997) used a bootstrapping approach to the problem. Pan (1999)
provided another modification of Levene’s test. Shoemaker (2003) suggested an
alternative F test using adjusted degrees of freedom.
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McGrath and Yeh (2005) developed the Count Five statistics that use the
transformations of Levene’'s (mean centered) and modified-Levene’s (median
centered) statistics. These statistics require the number of extreme points to be
counted, that is, those observations that are larger than all of the observations in
the other sample. The simulation results of McGrath and Yeh (2005) showed that
the Count Five (mean centered) test is more reliable for attaining the nominal size
reasonably well and that the power of this test is higher than that of all other
tests for the uniform distribution. However, they also found that the power of the
Count Five (mean centered) test is lower than that of all other tests for skewed
and heavy tailed distributions. Since a trimmed mean is more robust than a mean
for skewed distributions, we propose an alternative Count Five test using the
trimmed mean.

The properties of the Count Five test are introduced briefly in Section 2. In
Section 3, we propose a trimmed mean centered Count Five statistic, and compare
the results obtained using this method with those of other statistical methods
described in McGrath and Yeh (2005). And the normal mixture studied by Pan
(1999) is extended and used to generate random samples. The Count Five statistic
of McGrath and Yeh (2005) and the alternative statistic proposed in this paper are
compared for normal mixtures and their properties are discussed. Some advantages
of the Count Five tests are given in Section 4.

2. Count Five Statistic

Let X;,.., X

n,

distribution with E(X;)= p,, Var(X,)=o%?, E(Y;)=p, and Var(Y;)=o, for

i=1,.,n,, j=1,.,n,. We assume that pu, and p, are known. Then, the

and Y,,.., Y, be independent random samples from the same

absolute deviations |.X;— u,| and | Y;— p,| are iid under H,: o2=o,. Let o be
the extreme count for the X sample, that is, the number of |X,~ u,| that exceed
the maximum among | ¥;— p,|'s:
O = # {i:1X, = > max, 1Y, — )}
Also Cg(/") can be defined analogously.

The tail probability under H, is obtained in order to use an application of the

w
Exl

hypergeometric distribution such as

P(CH = m| Hy)=- (2.1)
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If n,=n,=n= N/2 and m = 2, then equation (2.1) can be simplified to
P(C = mlH,) = P(C’(") > m|H,) (2.2)
_ H N— 2k
2711
Note that for m<n<co in (22), P(C* > mlH,) = P(C* > mlH,) < 27

= .03125 for m=5. Thus, we can perform a two-sided test using a critical
value of m=>5 and have a significance level < .0625 for finite n regardless of the

distributional family.
In practice, both p, and p, are generally not known and must be estimated

from the sample. When we substitute X and Y for u, and p, in (2.1),
respectively, we obtain
The size of this test remains approximately the same as that of C,f"). Hence,

McGrath and Yeh (2005) suggested that if we "count five” when n, =n,, then we
reject the null hypothesis H,: o= o;. In other words, if C;"““" 25, we conclude
that o2 >0, and if C)"*" 25, we conclude that o2 > o7, The statistic C for
equal sample sizes is referred to as Count Five statistic. McGrath and Yeh (2005)
also proposed a median centered Count Five statistic C’;”ed: # {z |X,-—)~(l
> max jI Y,— f’l}, where X and Y are the sample medians.

When n,#n

and C,. We can find an appropriate critical value for C, by substituting different

,» the critical value of m =25 may not be appropriate for both C,
values of m into equation (2.1) until we obtain a value m; satisfying
P(C, > mylH,) ~ «/2. Alternatively, equation (2.1) could be approximated as

n,
n,+n,

(

)" using Stirling’s formular and, assuming that n, n,>m = 2, and one

may solve this for a/2.
McGrath and Yeh (2005) did simulation studies of the #, F, tests of Shoemaker

(2003), the L test of Levene (1960), the modified Levene’s test (ML) of Brown

and Forsythe (1974), and the C™“ and C™"¢ tests. The sizes and powers of

these tests were obtained for equal sample sizes of n,= n,= n =20, 30, 40, 50, 60

Yy
and the ratios of the dispersion parameters, §= o, Jo, =1, \/5 . Also, a variety of
distributions of X, were studied: standard normal, laplace, uniform, standard
lognormal, exponential, t-distribution with d.f.=4, and a normal mixture

previously studied by Pan (1999). The Y, observations were generated

independently from the above mentioned distributions and then multiplied by the
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dispersion ratio, so that Var(Y;)= & Var(X;) with = 1, V2.
Based on the performance of each test under the null hypothesis of §=1, one
can see that while all attain a size close to the nominal size=0.05 for the normal

distribution, the F, L, and C™¢® tests fail to attain the nominal size for the other
distributions. The F test performs poorly for all nonnormal distributions, whereas
the size of the L test is larger than the nominal size for the lognormal and
exponential distributions, as is the size of the C™? test for the uniform
distribution. So, of the six tests studied, it appears that the F,, ML, and C™*""
tests are the most reliable for attaining the nominal size.

Under the alternative hypothesis of §= /2, the powers of the F, ML, and

™ tests did not differ substantially for six of the seven distributions studied.
(The exception is the uniform distribution.) In fact, the Count Five test is more
powerful than any of the other tests in the case of a uniform distribution, and its
power lags behind that of the other two-sample dispersion tests for the other
distributions when n> 20. As the sample size increases, the power increases
slowly for most distributions, but decreases slightly for a normal mixture, where
X;~N(0,1) with probability 0.9 and X,~ N(0,4) with probability 0.1.

In the next section, we will explore these properties of the Count Five test for
certain distributions, including various normal mixtures, and propose an alternative
Count Five statistic using the trimmed mean.

3. Count Five with Trimmed Means and Simulation Results

The critical value of the Count Five test is always 5 for equal sample sizes, so
that the advantage of these quick and compact test for comparing the dispersions
of two samples does not require the calculation of ranks or reference tables.
However, since the Count Five test uses only extreme values, this statistic
discards some information from the samples, which often results in a degradation
in power. For large samples, the power of the Count Five test may be relatively
low and other tests may be preferred (McGrath and Yeh 2005).

In order to overcome these disadvantages, we propose an alternative Count Five
statistic using the trimmed mean as the follows:

comenn =y {i:]X,— X °|> max,|¥,— ¥°|}

where X ¢ and Y are the a% trimmed sample means. .
Adapting the simulation methods of McGrath and Yeh (2005), 10,000 sets of
random samples of X, and Y, are generated with the above mentioned

K3

distributions, the sample sizes of n =20, 30,40,50,60, and dispersion ratios of
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6=1,v2. The F, F,, L, ML, C’mea", and C™¢¢ tests are considered, as well as
the a% trimmed mean centered Count Five C*™*" test.

Since the sizes and powers of the F, F,, L, ML, C™", and C™* tests for
some distributions were shown and discussed in <Figures 2 and 3> of McGrath
and Yeh (2005), As would be expected, the sizes and powers of the a% trimmed

mean centered Count Five C®™*" (a=5,10,20) tests have similar behaviors to
those of the C™®" test. <Figure 3.1> presents the sizes and powers of all of the

Count Five tests (¢gmesn, ¢med gdmeam  glimean  and ™) for some

distributions in order to compare the three kinds of trimmed mean centered Count

Five tests with the C™* and C™%¢ tests.
From the plots on the left-hand side of <Figure 3.1>, we could find that the

cmem 3™ and 00 tests (but not the €™ test with a large

sample size and C™*! test) attain a size of close to the nominal size=0.05 for the
uniform distribution. For the normal and laplace distributions, all of the tests

obtain the nominal size. The €™ test comes closer to the nominal size than the

others for the exponential distribution. For the lognormal distribution, the €™

¢ mem tests perform better than the other tests when the sample size is

and
greater than 40.

From the plots on the right-hand side of <Figure 3.1>, it can be seen that for
the uniform, normal, and laplace distributions, the powers of all of the Count Five
tests exhibit similar behaviors. However the powers of all of the Count Five tests
come close to 1 for the uniform distribution, whereas the powers for the other

distributions are very low. In this situations, we can see that the performances of
the tests for the exponential and lognormal distributions are in the order C"°test
> g2meantest > C10meanpest > 0P test > C™M¢test. In other words, for
the exponential and lognormal distributions, the power of the C™¢¢ test is the
highest and that of C'™" test is the lowest. As the value of a% increases, the
power of the C°™°" test comes closer to that of the C™¢¢ test, which is the
most powerful test for skewed distributions.

Therefore, for the uniform distribution, the mean centered Count Five statistic,
and the 5%, 10%, and possibly 20%, trimmed mean centered Count Five statistics
perform better than the median centered Count Five statistic with respect to the
size and power of the test. We can say that, in comparison with the other
two-sample dispersion test statistics such as the F, F}, L, ML tests, both of the
mean centered Count Five test and the trimmed mean centered Count Five test
perform very well for the uniform distribution. Hence we would like to generate
random samples following analogous uniform distributions, such as the following
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normal mixtures with three normal distributions:

‘@ (~V(0,1)+ N(2,1)+ N(4,1))/3

@ (N(0,1)+ N(2.5,1)+ N(5,1))/3

@ (~3(0,1)+ N(3,1)+ N(6,1))/3

From the sizes and powers for these normal mixtures in <Figure 3.2>, it can be

seen that the ¢™, ¢®™ (™ and ™" tests behave similarly and
attain the nominal size, whereas the C™ test exceeds the nominal size.
Moreover, the powers of all of these Count Five tests are very much identical and
have low values. This phenomenon becomes even more remarkable as the
differences in the means in the normal mixtures increase from @ to Q.
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<Figure 3.1> P(Type I error) and Power
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<Figure 3.2> Continued

4. Conclusion

Although most two-sample dispersion tests require tables of critical values or
software to calculate the p-value, the Count Five test can be performed simply by
calculating the number of extreme points. The critical value of the Count Five test
is always 5 for equal sample sizes and, even in the case of unequal sample sizes,
it can be obtained with ease.

In this paper, an alternative Count Five statistic using the trimmed mean,
comeen (q=5,10,20), is proposed and compared with other two-sample
dispersion tests, viz. the F, F,, L, ML, C™*", and C™*® statistics, for the many
distributions studied by McGrath and Yeh (2005), as well as for normal mixtures.
We found that the performance of the C ™" test is similar to those of the

C™ and C™* tests, but that the C°™°™" test is more powerful than the other
dispersion tests, including the F, /), L, ML tests, in the case of the uniform

distribution (see <Figure 4.1>). Secondly, the C“"“" test is better than the
C™e" test with respect to the size and power for the lognormal and exponential
distributions (see <Figure 3.1>). As the value of a% increases, the power of the
trimmed mean centered Count Five statistic increases for skewed distributions,
such as the lognormal and exponential distributions. Finally, for normal mixtures
corresponding to case @ above, the powers of the Count Five tests, including the
trimmed mean centered Count Five test, are not as high as that exhibited for the
uniform distribution, but are higher than those of the other tests, such as the F,
F,, L, ML tests (see <Figure 4.1>). Therefore, we can conclude that the trimmed
mean centered Count Five test proposed in this paper attains the nominal size and

is more powerful than the other dispersion tests for heavy tailed and skewed
distributions, such as the uniform, lognormal, exponential distributions, and normal
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mixtures (for example, case @).
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<Figure 4.1> Performance of the Count Five for Uniform and Normal Mixtures
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