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On Convex Combination of
Local Constant Regression!)

Jungwon Mun? and Choongrak Kim3

Abstract

Local polynomial regression is widely used because of good properties such as
such as the adaptation to various types of designs, the absence of boundary
effects and minimax efficiency. Choi and Hall (1998) proposed an estimator of
regression function using a convex combination idea. They showed that a convex
combination of three local linear estimators produces an estimator which has the
same order of bias as a local cubic smoother. In this paper we suggest another
estimator of regression function based on a convex combination of five local
constant estimates. It turned out that this estimator has the same order of bias as
a local cubic smoother.
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1. Introduction

Local polynomial fitting has good properties in both theoretical and practical
sense. This method has lots of good properties, such as the adaptation to various
types of designs, the absence of boundary effects and minimax efficiency. Local
constant smoothers (e.g. Nadaraya (1964) and Gasser-Muller (1984)) and the local

linear smoothers have their conditional bias of size h* where h is a bandwidth to
be estimated. Gasser—-Muller estimator has the same conditional bias as local linear
smoother, but it has larger variance (the same variance in fixed design). There
are many papers which show the advantages of local linear smoothing, e.g. Fan
(1993), Hastie and Loader (1993), Cleveland and Loader (1996), Fan and Gijbels
(1996).

In local polynomial fitting, we put larger weight in a neighborhood of z with
kernel function X, to estimate the regression function m(z). Provided the (p+1)"
derivative of m(-) at the point z exists, we can approximate the unknown
regression function m( -+ ) locally by a polynomial of order p. To reduce the bias
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of local polynomial estimator of mf(z), we can take p as large. For large p,
however, we encounter with two serious problems. First, the variance increases as
p increases. Of course the asymptotic order of the leading term is independent of
p, but the constant of the leading term is an increasing function of p. Secondly,
when the data are sparse, calculation of a local polynomial smoother involves
inversion of (p+1)X(p+1) matrix, with potential numerical problems resulting
from near-singularity. So we usually take p=0 or 1, in other words, local
constant and local linear approaches are preferred to local quadratic or local cubic
to avoid potential numerical problems for the sparse design. For the sparse design,
we might encounter with numerical problems when p is large. For example, the
determinant arising from the estimation of regression function is close to zero as
argued by Chot and Hall (1998).

Choi and Hall (1998) proposed an estimator of m(z) using a convex combination
idea. To be more specific, they showed that a convex combination of three local
linear estimators produces an estimator which has the same order of bias as a

local cubic smoother, ie. it can reduce the order of bias up to h’.

In this paper we suggest another estimator of m(z) based on a convex
combination of five local constant estimates. It turned out that this estimator has
the same order of bias as a local cubic smoother. Section 2 gives basic concepts
and approaches of convex combinations. A suggested estimator and its asymptotic
bias are derived in Section 3. Finally concluding remarks and further research area
are given in Section 4.

2. Basic Concepts and Approaches

Choi and Hall (1998) suggested an estimator, m; that is a convex combination

of three local linear smoothers. ie. m,(zlz), m (zlz+1h) and m(zlz—Ih). See
<Figure 1>. With proper weight A and !, their estimator reduces the bias by
two orders of magnitude. We will discuss this estimator in detail in Section 3.

If the data points near the target point z are very sparse then even the local
linear estimator can also be unstable. So, it can be more stable if we deal with
the local constant smoother rather than the local linear smoother. First, we start
from five local constant estimators. As shown in <Figure 2>, we get two
estimators using the line passing through a pair of local constant smoothers at
x+1;h and x+2l,¢h(i=1,2). Now, we call the line determined by two local

constant smoothers "Local Constant Line”.
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<Figure 1> A curve indicates true regression function and solid lines indicate
local linear line at target points z+[;h and z+1,h. Two circular points denote
skewed estimators and rectangular point denotes local linear estimator evaluated at
z. Convex combination is done for three points.
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<Figure 2> A curve indicates true regression function and dashed lines
indicate local constant line which passes through two local constant
smoothers at target points z+[h and z+2Lh(i=1,2). Two triangular
points denote skewed estimators and rectangular point denotes local
linear estimator evaluated at =z. Convex combination is done for three
points.
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3. Estimators and Properties

Assume that pairs of random variables (X, Y;), -, (X,,Y,) are distributed

independently and identically. We wish to estimate the regression mean, m{z).
Local constant regression and local linear regression use the least squares method
through data pairs in the neighborhood of z. In the case of local linear, we find
the minimizer of

Tt

Sla,b) = Y, (Y;—a—b(X,— z))*K, (X, — z),

i=1

where K, (u)=h"'K(u/h), K is a nonnegative and symmetric kernel function,
/ K(u)du=1, and h is a bandwidth. The minimizing pair of (alz),b(z)) is

ro(z)sy(z) =7 (2)s,(z) bo) = ri(z)sy(z) —ry(x)s

so(x)SZ(a:)—sl(x)z ’ S()($)Sg($)_31($)

a(z)=

’

)

where
ri(z) = Y (X;— 2 VK, (X, —2)Y;,

i

s;(z) = Mi(X,—2VK, (X,—z), j=0,1,2.

Then the estimator of the line is
mulz) = alz)+ b(z)(u—z).
The estimator, m,(z), suggested by Choi and Hall (1998) is
my(z) = \m{zle+Lh)+m;
where A;, A,>0 are weights, ; >0, {,<0. If we take A\ =X =X and

l, =—1,=1,, say, then, it enhances not only the symmetrical structure of m(z),
but also reduces the conditional bias. It turned out that the constant [ is

I(\)= {(1+/\)n2/(2).+1)}1/2, where x, = fu2]((u)du. See the appendix of Choi

and Hall (1998) for proof. In fact they showed the following result.

Theorem 1. (Bias of m(z), Choi and Hall (1998)) Assume that m(z) has four

bounded continuous derivatives in a neighborhood of z that has three bounded
continuous derivatives there f(x)> 0 that the kernel K is nonnegative, bounded,

symmetric with /K(u)duZl; and that h=h(n)—0 and nh—co. Take |, =—1,
and I, =—1,()\). Then,
Bias(ﬁzL(a:))zBL(:c)h4+op{h4+(nh)ﬁ'/2},

where



Local Constant Regression 383

B,(z)= —1—[2(n§ - M){Zm”(z) fj;'(i””)) p— f; ((j)) +m(i”)(x)}— m(i”)(z)%]

The proof of Theorem 1 and comments are suggested in Choi and Hall (1998).
In local constant smoother case, we wish to minimize

n

Sla)= Y, (¥;—a) K, (X, — z),

i=1
and the minimizer is

_ YK -9)Y,
- EKh (Xz_x)

which is Nadaraya-Watson estimator of m(z). This estimator has conditional bias

alz)

= T;lc(l')y

of size K%, ie.,
hy

Bias(m{x)) = 7nz(m"<x>+ ﬂ%‘(ﬂ o, (R + (nh) Y2}

We suggest an estimator based on a convex combination of three estimators.
One is the Nadaraya-Watson estimator m(z) and the others come from the local
constant line passing two points (z+Lh, mo(z+1Lh)) and (z+2Lh,mq(z+ 20h)),
L;(z), say, ie.,

melz+2Lh) —mo(z + Lh) -
Li(z)=—5 T (z—z—Lh)+mglz+Lh)
1

Then, the convex combination of L,(z), (i=1,2), evaluation of the local

constant line at z=z, and the estimator mg(z) enables us to produce an
estimator, m(z),

— (o)= ML (@) +mele) + ALy (z)
M= M FLIH, ’

where A >0 is weight , [, <0, [, >0. In order to enhance the symmetrical

structure and reduce the conditional bias, take A\, =X, =X and 1, =—1, =1, say,

and it will turn out in Theorem 2 that

lc()\) =

Now, the bias of the proposed estimator mc{z) is given in the following

theorem, and see Appendix for proof.

Theorem 2. (Bias of m(z)) Assume that m(z) has four bounded continuous
derivatives in a neighborhood of z that has three bounded continuous derivatives
there and f(z)> 0; that the kernel K is nonnegative, bounded, symmetric and
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fK(u)du=1. Take A\, =\, =\, [, =1, and I5=1,()\). Then,

Bias(mo(z) = Bo(z)h* +o0,{h* + (nh)” vy

where

) () L) ), ) )
w) Ko (x) m' (z

! )m - 4!fx)_’12>\m"(cc),(f : ))m &)+ ,,,( ))

+ [4,€2{m'($ (J;f((;:)) _3f ;;2£)2($) n (J}((;U) )3)+m"(x)(f (z)

We note that the order of the leading term of the bias of the suggested
estimator has the same as the order of Choi and Hall (1988)’'s estimator even
though the constant terms are different. Also, it is clear that the orders of the
leading term of the asymptotic variance for each estimator remains unchanged.

4. Concluding Remarks

The local constant and the local linear smoothers have bias of size h’. By the
convex combination of three local linear estimators, Choi and Hall (1998) showed
that it can reduce the bias to h*, bias of a local cubic smoother. Similarly, we
showed that the convex combination of three local constant estimators produce an

estimator that has the same order of bias as a local cubic smoother at the

)

expense of stronger assumptions such as the existence of m'. The suggested

estimator is more useful than that of Choi and Hall(1998) especially when the data
are very sparse.
As a further research, it will be useful to compute the variance of m(z) even

though it requires a very tedious algebra. Evaluation of M for various kinds of
kernel function is worth pursuing. In this case, we choose one of three possible
criteria; Minimizing the mean squared error, variance , or squared bias. Also it is

worth comparing the leading terms of bias of m;(z) and m(z) for various types
of f(z) and m(z) with kernel A(xz).

Appendix
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To prove the Theorem 2 , we require weaker symmetry conditions than those
imposed on K. That is we need only k, =k; =0, k5 doesn’t have to be zero.

Note that

- KX -2)Y, _ K,(X;,—2)E(Y;|X)

R 1 e Ry Ao
and
BY1X) = m(a)+m' (@)% —2)+ " -y T e
(iv)
127 (x gy tol(X—2))

4!
Expansion of the expectation of m(z) results in

~ S m(z) S m () S m(z) S
Em)X)=mz)+m'(z)—+ —+
st 2 53 5t o s
n m(v)(m) Ss

where S;= Y K, (X;—2)(X;—z), j=0,1,2,-~, and R(z) is the remainder term.
Since S;= E(S;)+ 0,(y/Var(S;)) by tightness, it can be easily shown that, for

example, see Fan and Gijbels (1996, pp. 101),
[ (z)

2

[ (@)

2

S :nhf{f(x)nj+f’(x)nj+1h+ K ah”

+f(il;i!(x)nj+4h4+0(h4)+ 0,( \/%}7)}
Then we can derive the following result.
BR@IX =m(@)+ [ @ L, 4 (@) 22|
(PR -Ler) g
4 m';!(w) J;((:Z?)) - m(i;)!(w) ﬁ4] B4
+o(h)+ o,,(ﬁ).

By expanding this result with Taylor series, we prove that, for any fixed I,
E(mglz+1h)IX)=m(z)+lhm'(z)

+ {@m' (z) f'(z) +m”(m)ﬂ+12———-m”(x) }hQ

f(xg ’ 2 2 , 5 y
o G- Gy P e e e

m'(z) (&) &) ) o\, m &) fz),
+[ 2 (3f(a:) 4 f(z)? K2)+ 4 flz) (k4 = #3)
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rre ’ (iv) e ’ r
m'"(z) f(z) m (w)MHzH?{m/( )(f (z)  3f (z)f"(z)

3t flo 4! z) 2(f(2))?
F@) v\, v \f)  fa)u), m" (@) ), m™ ()
S R O R e }
+l4m(w)($)]h4+ )+ 0, ( 1 )
T ° Pk
Similarly,
E(m(z+2Ih)IX) =m(z)+2lhm’ ()
D e L
@) ), oo ), m" @), :4m”"(2)],3
[2“’"2{ (“'“)( e (f:c)))+m S }” 3 ]"
m' (@) (f"(z) _ fe)f @) B\, m () f'@)
*[ 2 (3f(:c) KT 2)* 1) k)
m'" (z) f(z) m™ () 2 N 2)  3f @) f (=)
@)\, o =) fle) m" (x) flz) , m'™ (&)
L)o@ G F - g mE L g }
4m(i)( ) 4 1
+lT]h +o (h)+0(\/—h)

It is easy to make a line passing through (z+Lh, m(z+1h)) and
(z+ 2Lk, m(z+2L,h)) say L,(z). Expectation of estimator based on this line is

E[L()]=m(z) + {%m'u)@ + 2A8) p @) |+ e

o NS &) 3 @)f (@) &)
+{— 2K50m (w)( 2 () - 2f(x)2 +( 7 ) )

e ' m" () fz), m" (&
+mu(x)(f (E)__(f(.’l)))g)_,_ ( )f( )+ ( )

fle) ° f(=z) 2 flz) 4
m'(z) (&)  fe)f (@) 5\, m" () [ (=) 2
+ 2 (3f($) Ky z) n2)+ 1 @) (ky—K3)
'(x m™ (z) 74 (i
+ 2 3!(3;) f]‘c((x)) Kyt 1 Elim( )( )}h

Now, consider the conditions that the terms h? and h® vanish. Those conditions
are

Ko +1+2)— NE+X05)=0
ME+ 2,0 =0.
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The second equation suggests that if we take A =X, = A, then [, =—1[, =1
follows consequently. Then the first equation implies
22+1
lC ()‘) = ( 9 )\ )K’2
Finally, conditional bias expansion in Theorem 2 follows directly.
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