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ABSTRACT

It is impractical to install sensors on every floor of a tall building to measure the full

state vector because of the large number of degrees of freedom. This makes it

necessary to introduce reduced order control, A kind of system reduction scheme {(dynamic candensation method) is proposed in this paper. This methed is iterative and

Guyan condensation is looked upon as an initial approximation of the iteration. Since the

reduced order system is updated repeatedly until a desired one is obtained, the

accuracy of the reduced order system resulting from the proposed method is much higher than that obtained from the Guyan condensation method. An eigenvalue shifting
technique is applied to accelerate the convergence of iteration. Two schemes to establish the reduced order system by using the proposed method are also presented

and discussed in this paper. The results for a tafl building with active tuned mass darnper
the accuracy is very close to exact only after two iterations.

Key words : active control, dynamic condensation, tuned mass domper

1. Introduction

The response of tall buildings under strong
wind turbulence or earthquake has a severe influ-
ence on the structural safety and comfort of
occupants. Hence a variety of control algorithms
have been developed to control the displacement
and acceleration responses. Among them, the ac-
tive vibration control has received considerable at-
tention by a lot of researchers. Different active
control devices have been investigated and con-
structed in the US., Japan and elsewhere during
the last two decades (Soong et al, Abiru et
al.?%). The principle of the active control is to pro-
vide external corrective forces in strategic points in
the structure to constrain the response within pre-
determined performance limits(Soong®).
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show that the proposed method is efficient for the reduced  order modetiing ang

Active bracing systems and active variable stiff-
ness systems are systems built of conventional stru-
ctural components of structures enhanced with ex-
ternal forces that modified either the effective
damping, or the natural frequency of the system
to produce more efficient vibration suppression.
However, the use of such systems requires an in-
tervention or modification of the structural systems
which is usually prohibitive in the existing large
structures (Cao et al.¥)). Mass dampers, which in-
(TMDs) and active
tuned mass dampers (ATMDs), are additional large

clude tuned mass dampers

weights added to the structure or isolated from
the main structural system. They can absorb en-
ergy transferred from the main structure through
their large movement. Their action is similar to in-
creasing the damping in the main structure. The
advantage of this kind of system is that it does
not require major intrusion in the structural sys-
it

tem. Therefore, is suitable for retrofit cases.
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onstrated to be quite effective, passive dampers
may not achieve satisfactory performance for some
structures with space and physical limitations, and
hence ATMDs are necessary (Ankireddi et al.(s)).

For the reduced-order conirol, a reduced-order
system should be derived from the full-order
structural system at first by using system reduc-
tion scheme. Many kinds of system reduction
methods, such as optimal projection (Wilson®; and
Hyland et al”)), critical mode reduction (Yang et
al.®)y, Guyan condensation (Guyan®) and so on,
have been proposed during the past three decades.

In the Guyan condensation method, the total de-
grees of freedom of the full model are divided in-
to two parts which are called the master and
slave degrees of freedom. The former will be re-
tained in the reduced model and the latter will be
condensed out. Then a condensation matrix is
used to transfer the full model into the reduced
model defined in the subspace which is defined
by the master degrees of freedom. The advantage
of the condensation method is that the correspond-
ing reduced-order system is defined in the sub-
space of the physical space of the full-order sys-
tem; hence, the coordinate has specific physical
meaning. Due to this, the technique has been
broadly used for the active vibration control of
journal bearing (Sun et al.%y, spacecraft solar ar-
ray (Sowmianarayanan et al.'”), flexible payloads
(Gaudenzi et al."?).

Unfortunately, the dynamic effects are ignored in
the Guyan condensation matrix. It is only exact for
static problems. For dynamic problems, the accu-
racy is usually much lower and fully depends on
the selection of the master and slave degrees of
freedom. If the chosen master degrees of freedom
are improper, the accuracy will be very low.
Hence, several selection schemes were proposed
(Henshell et al."®, Matta™). According to the rules
of the condensation technique (Qu®™), the degrees
of freedom on which the actuators and sensors are
mounted and on which the displacements (velocit-
ies and accelerations) are dependent should be se-
lected as the master degrees of freedom. This makes
these selection schemes fully or partially invalid for
active control systems.

To improve the accuracy of the Guyan con-
densation, a dynamic condensation method is first

proposed to establish the reduced-order system in
this paper. This method is derived directly from
the eigenvalue equation of the full-order system. It
is an iterative method and the static condensation
(Guyan”) is looked upon as an initial approx-
imation of the reduced-order system. Hence, the
accuracy of reduction is much higher than the
static. Then the method is used for the vibration
control of a tall building with an active tuned
mass damper. Finally, numerical examples, a tall
building, a tall building with TMD and a tall
building with ATMD, are included to demonstrate
the efficiency of the proposed method.

2. System Reduction Scheme

The general form of dynamic equations for a
structure or system can be written as

MX() + CX(1) + KX(t) = F(t) 1)

where, M, C, and K are the mass, damping,
and stiffness matrices of size nxn, respectively. M
is assumed to be positive definite. F(f) is an ex-

ternal force vector. X(¢), X(r), and X(¢) are the
displacement, velocity and acceleration vector of
the system. For a structure, especially for a large
and/or complex structure, the damping matrix is
usually assumed to be proportional to stiffness
and/or mass matrices, that is

C=0K+pM )

where o and B are constants.
The general eigenvalue problem of this structure
can be expressed as

K®=MoDQ 3

where ® and Q are, respectively, the eigenvector
and eigenvalue matrices of size nxn. The ei-
genvalues in the matrix are arranged in ascending
order. When an eigenvalues-shifting technique is
applied to Eq. (3), one has

D® = MDA 4
where
D=K-¢gM A=Q-gI 5)

22  E=EXTSEHE =23
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and ¢ is an eigenvalueshifting value and has
two functions: (1) accelerating the convergence of
iteration and (2) making the reduced-order system
close to the dynamic characteristics of the full or-
der in any given frequency range @, 0..] or
around a given frequency . For case 1, q should
satisfy

0L g<h, (6)

where 4, is the lowest eigenvalue of the full-or-
der system. For the second case,

=77 org=0’ @

If only m eigenvalues and eigenvectors are con-
sidered, Eq. (4) can be rewritten as

DO_=M®_A__ (8)

Matrices @, € R™ include the m eigenvectors
and eigenvalues, respectively.

Suppose that the total degrees of freedom (n) of
the full system is divided into master degrees of
freedom {m), which will be retained in the re-
duced model, and slave degrees of freedom (s),
which will be condensed. The numbers of the two
groups are m and s, respectively. According to the
practical rules of the condensation technique, the
degrees of freedom on which the actuators and
sensors are mounted and on which the displace-
ments (velocities and accelerations) are dependent
should be selected as the master degrees of
freedom. Based on this division, Eq. (8) can be
partitioned as

D mm D ms ¢ mm M mm M ms Q mm A
D sm D 88 m sm = M sm M S5 @ sm . (9)
After rearranging the second equation of Eq. (9),
one has

®Sl'l‘l = D;; [Msmq)mmAmm + Mssq)smAmm - Dsmd)mm]
(10)

/
Define system reduction matrix Re R™", which

relates the deformations or eigenvectors associated

with the master and slave degrees of freedom, as

®_=R® (11

Substituting Eq. (11) into both sides of Eq. (10)
and then postmultiplying both sides by the in-
version of matrix @, we get

If we let =0 and all the eigenvalues in matrix
Q.. are zero which means ignoring the dynamic
effects, Eq. (12) becomes

R, =-KJK_, (13)

This is the socalled Guyan condensation matrix.
Obviously, it is exact for static problems. For dy-
namic problems, the accuracy will reduce with the
increase of the eigenvalues.

For the reduced system, the eigenvalue problem
can be expressed as

I(R(I)mm = MR‘I)mmgmm (14)

where My and K;€ R™" are the mass and
stiffness matrices of the reduced model, respec-
tively. Similarly, when an eigenvalue shift is in-
troduced into Eq. (14), one has

D;® =M. ® A . (15)
The following equation can be obtained from Eq. (15)

M;D,=®__A_ @ (16)

Introducing Eq. (16) into the righthand side of
Eq. (12) one has

R=D] [M_ + M _RM;D, -D_] (17)

Eq. (15) is the governing equation of the system
reduction matrix. It can be rewritten in an iter-
ative form as

R® =D [M,, + M_ROYMP)'DY - D]
R® =-DD,, (18)

where i=0,1,....

Since the proportional damping assumption is
used in Eq. (1), the dynamic equation can be un-
coupled in real modal space and the dynamic re-
sponses can be obtained by using modal super-
position, that is,

X(@) = @,q(1) (19)
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Figure 1 Tall building with ATMD.

q(#) is the displacement of the structure in mo-
dal space. If the same division of the degrees of
freedom is used, Eq. (19) becomes

X m (t) (I)mm
= q(r)
X,(®) L/ (20)
which is equivalent to

X, 0)=®_.q@), X,())=P,q() 1)

Introducing Eq. (11) into Eq. (20) and consider-
ing Eq. (21), one has

XuOL _| P = ! D, .q9() = ! X, 6O =TX (¢
X0 | o a0 =| o |Pwma® =] o X O=TX, @)

sm

(22)

where the coordinate transformation matrix Tis

defined as

T I
IR (23)

The transformation matrix is independent of time

t, hence we have
X0 =TX, 0, X0)=TX, ®) (24)
Substituting Egs. (22) and (24) into Eq. (1) and
premultiplying both sides by the transpose of ma-
trix T, one has

M. X +C.X, +K. X, =F, (25)

where the mass, damping, and stiffness matrices

Top floor

f1®

S ——

| —  , L0
o=

m, (i, + %)

X

Figure 2 Forces acting on the active conirol system.

and the force vector of the reduced model are de-

fined as

M, =T'MT, C, =T'CT, K, =T'KT, F, =T'F
(26)

Since the number of master degrees of freedom
is much smaller than the total, it will be very effi-
cient when we use the reduced model to design
the active vibration control system.

3. Full Order Control

A tall building with ATMD, as shown in Fig. 1,
is considered here. The forces acting on the active
control system are shown in Fig. 2. X, and *, * X4
are the absolute displacements of the top storey
and ATMD. f.(f) is an active control force acting
on the ATMD. It is an internal force for the sys-
tem, hence the top storey will be subjected a re-
active force.

Supposing that the tall building has n degrees of
freedom, the dynamic equations of this system are

MX(r) + CX(t) + KX(1) = F(1) + Df, (1) - Df, (1) (27)

my[%,@) + £, 0]+ f,@0) = £.@) (28)

where M, C and K are the mass, damping and
stiffness matrices of the building, respectively. F(7)
is an excited force vector. f;(t) and the force dis-

tribution vector D are defined as

fd (t) = Cdxd (t) + kdxd (t) (29)

24

A NSEE =28
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—a (30)

By using matrix form, Eqgs. (27)-(30) can be ex-

pressed as
MX() + CX(1) + KX(r) = F(t) + Df, (1) (31)
where
my my ooy, 0 &y €y ot 6, O
My My om0 Cy Cpn Coy 0
M = C=lo o
My My om0 Ca Cmp 0 G TG (3281)
0 0 - my my 0 0 - 0 my
by ky 1 0 x, (D) 0
by ky 2 Y x,(0)
K= | X)) = D={0
k, k, k, -k, %,(0) ! ‘:{F“)l
0 0 o & I X0 1) °J
(32b)
Eq. (31) can be rewritten in state space as
Z(t)= AZ()+ Bf,(1) + V() (33)

where system matrix Ae R*™"*™*, control vec-
1
tor Be R*™Y, load vector V()€ R*™V and state

vector Z(1)e R*™" are, respectively, defined as

A:[ . _‘4_} B{_‘_{_l vm{_f’_ ]
-M K -M Cj, M D M F()),
20~ %)

X(@) (34)

There are many control algorithms for the active
vibration control of tall buildings. The LQR (linear
quadratic regulator) is only considered here for
simplicity. The regular problem is defined as
(Meirovitch(lé)) the problem of designing a control
input so as to drive the structures from some ini-
tial state to the zero state. The linear regulator
problem is the one in which the control is a linear
function of the state. According to the definition
of the LOR, one has

V(1)=0 (35)

The object of LOR is to determine an optimal
control minimizing the quadratic performance meas-
ure

J= %ZT(zf ISZ(1, ) + % [z wewzw + ruo .ol
(36)

where the weighting matrices § and Q of state
variable are real symmetric positive semidefinite. [/
is usually a real symmetric positive-definite matrix.
However, it is a positive variable for the control
model considered here. f; is the end of integration
time. A minimization of the performance index |
in Eq. (36) subject to the constraint of Eq. (33) re-
sults in the wellknown LQR controller (Meiro-
vitch, 1990),

f)=-TZ{t) =-U"B"PL() (37)

in which P is the Riccati matrix satisfying the

algebraic Riccati equation
PA+A"P-PBU'B'P+Q=0 (38)

It can be proven that Eq. (38) has a unique pos-
(4, Q@) is
observable. T is the state feedback matrix. The dy-
namic equation of the corresponding close-loop

itive definite solution as long as

control system is
Z() =|A - BU"B"PZ() (39)

4. Reduced Order Control

There are two ways to obtain the reduced-order
system by using the proposed system reduction
scheme. One is to reduce the global dynamic mod-
el of building and ATMD. The other is to reduce
the dynamic model of building at first and then to
construct the reduced-order system by using
ATMD and the reduced model of building. There
are advantages and disadvantages for both ways.
The first way is a little more simple and direct
than the latter and the reduced-order system ob-
tained from it can retain all the dynamic charac-
teristics of the full-order system in a given fre-
quency range. However, when the parameters of
the ATMD
should be reformulated from the beginning. This

change, the reduced-order system
makes it inconvenient to optimize the parameters
of the ATMD and it is usually used in a specific

system. For the second way, only several variables

H10d H25 (SH H48%5) 2006. 4.
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should be modified when

ATMD change. In order to be concise, only the

the parameters of

second way is considered in the following.

Suppose that the reduced-order mass, damping
and stiffness matrices of the tall building are, re-
spectively, Mg, C; and Kj;. The dynamic equa-
tions of the reduced system are

M X (7) + Ca X (1) + Kx X (t) = Fr () + D £, (1)
(40)

where matrices or vectors Mz Cr Kr Xn(t),
Fr and Dg are obtained from Egs. (31) and (29)
by replacing m, ¢, k, n and F by mB, &, k% m
and Fg, respectively. Eq. (39) can be rewritten in

state space as

Z ()=ARZ, )+ B, f.()+ Vi () (41)

R2(m+1)x2(m+l)

The system matrix Ay € , control vector,

1
force vector Be R*™D, force vector V(t)e R*™V

R20mD

and state vector Z,(t)e are defined as

A = 0 | B. - 0
R _MiKr -MxCz) * |MxDe| (42a)

| o _1Xa
V2 ) _[ﬁﬁ’fg(t)] Z.® {x m} (42b)

Similarly, we have the following equations by
using the LOR control technique

f.O=-T Z, ()=-UByPZ, () (43)
P, A, + ATP, —P.B U;'BiP, + Q. =0 (44)
z,0)=[A, -BUIBIRJZ, 0 (45)

5. Numerical Example

The proposed method has been tested on a 40-
storey building with ATMD shown in Fig. 1. Each
storey unit of the building is identically con-
structed with a storey height of 4m, mass ™; =
1290 tonnes, stiffness k; = 106 kN/m, and damp-
ing ¢; = 14260 kNs/m for i=1,2,---,40. The build-
ing is symmetric in both lateral directions and the
mass centre coincides with the elastic centre, so
that there is no coupled lateraltorsional motion.
Only one direction motion will be considered. The
mass of the damper is 258 tonnes, which is 20
percent of a floor mass. The stiffness and damping
coefficient of the damper are 3009 kN/m and
83.592 kNs/m, respectively.

Suppose that the 5th, 10th, 15th, 20th, 25th, 30th,
35th and 40th floors are selected as the master de-
grees of freedom when the proposed system re-
duction scheme is applied to the tall building.

Table 1 Comparison of frequencies (rad/s) of the reduced and full order models of a tall building
Mode FOS ROS (i=0) ROS (i=1) ROS (i=2)
0
Real Imag. Real Irnag. Real Imag. Real imag.
1 —0.0083 1.0798 —0.0083 1.0814 —0.0083 1.0798 —0.0083 1.0798
2 —0.0747 3.2369 —0.0767 3.2796 —0.0747 3.2369 —0.0747 3.2369
3 —0.2072 5.3869 —0.2226 5.5831 —0.2072 5.3871 —0.2072 5.3869
4 —0.4049 7.5250 —0.4639 8.0525 —0.4052 75273 —0.4049 7.5251
5 —0.6667 9.6465 —0.8230 10.7124 —0.6691 9.6642 —0.6668 9.6479
6 —0.9909 11.7469 —1.3079 13.4804 —1.0067 11.8400 —0.9934 11.7618
7 —1.3756 13.8217 —1.8594 16.0413 —1.4433 14.1543 —1.3960 13.9227
8 —1.8186 15.8666 —2.3006 17.8151 —1.9327 16.3503 —1.8910 16.1755
Table 2 Comparison of frequencies (rad/s) of the reduced and full order models of a tall building with TMD.
Mode FOS ROS (i=0) ROS (i=1) ROS (i=2)
o
Real Imag. Real Imag. Real imag. Real Imag.
1 —0.0294 1.0719 —0.0297 1.0737 —0.0294 1.0719 —0.0294 1.0719
2 —0.1418 1.0771 —0.1416 1.0769 —0.1419 1.0771 —0.1419 1.0771
3 —0.0768 3.2386 —0.0788 32814 —0.0767 3.2387 —0.0767 3.2387
4 —0.2090 5.3878 —0.2246 5.5841 —0.2089 5.3880 —0.2089 5.3878
5 —0.4066 7.5256 —0.4660 8.0532 —0.4068 75279 —0.4066 7.5257
6 —0.6683 9.6469 —0.8255 10.7129 —0.6708 9.6646 —0.6685 9.6484
7 —0.9925 11.7472 —1.3106 13.4808 —1.0086 11.8403 —0.9951 11.7621
8 —1.3772 13.8219 —1.8620 16.0416 —1.4455 14.1546 —1.3979 13.9230
26 HEXNBEE =23 H10H HM23 (83 H48%) 2006. 4
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Figure 3 Responses of building with TMD under step load.

Weighting matrices Q and Qg are diagonal. All
the diagonal elements corresponding to the master
degrees of freedom are 1 and the rest are zero.

U=Ug =10"", The former eight complex frequen-
cies of the reduced-order system of (1) the tall
building only, (2) the building with TMD and (3)
the building with ATMD are listed in Tables 1, 2
and 3, respectively. The former eight complex fre-
quencies of the corresponding full-order system are
also listed in these tables. They are considered as
the exact for comparison purpose.

The following three conclusions can be drawn
from the results in these tables. (1) The accuracy
of the reduced-order system obtained from the ini-
tial approximation, static condensation, is very low.
Only the former two or three frequencies are close
to the exact. (2) The differences between the com-
plex frequencies of the reduced-order system and
the former eight frequencies of the full-order sys-
tem reduce consistently with the increase of the
iteration. (3) The frequencies of the reduced-order
system are all very close to the full-order system
after two or three iterations. Hence, they can accu-
rately replace the dynamic characteristics of the
full-order system in low-frequency range.

Assume that there is anunit step load acting on
the top floor of the building. The responses of the
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Figure 4 Responses of building with ATMD under step load

top floor of the building with TMD and ATMD
obtained from the reduced-order and full order
and 4,
respectively. Obviously, there is a little difference

systems are shown in Figures 3
between the initial approximation and the exact,
while the responses of the first and second ap-
proximations are very close to the exact and it is
them from these

very difficult to distinguish

figures.

6. Conclusions

A system reduction scheme, dynamic condensa-
tion method, has been proposed in this paper.
Since it is an iterative method and the static con-
densation method is considered as its initial ap-
proximation, the accuracy of the reduced-order sys-
tem obtained from the present method is much
higher than the static. An eigenvalue-shifting tech-
nique was also applied to accelerate the con-
vergence and make the reduced-order system close
to the dynamic characteristics of the full-order sys-
tem in any given frequency range. Two schemes
for constructing the reduced-order system by using
the proposed method were presented. The results
of (1) a tall building, (2) a tall building with TMD
and (3) a tall building with ATMD showed that

Table 3 Comparison of frequencies (rad=s) of the reduced and full order models of a tall building with ATMD
Mod FOS ROS (i=0) ROS (i=1) ROS (i=2)

ooe Real Imag. Real Imag. Real Imag. Real Imag.

1 —0.0789 1.0563 —0.0806 1.0578 —0.0788 1.0563 —0.0788 1.0563
2 —0.1249 1.0926 —0.1235 1.0927 —0.1251 1.0927 —0.1251 1.0927
3 —0.0782 3.2386 —0.0804 3.2814 -0.0782 3.2386 ~0.0782 3.2386
4 —0.2094 5.3878 —0.2251 5.5841 —0.2094 5.3880 —0.2094 5.3878
5 —0.4068 7.5256 —0.4663 8.0532 —0.4070 7.5279 —0.4068 7.5257
6 —0.6684 9.6469 —0.8257 10.7129 —0.6709 9.6646 —0.6686 9.6483
7 —0.9925 11.7472 —1.3108 13.4807 —1.0087 11.8403 —0.9952 11.7621
8 —1.3772 13.8220 —1.8622 16.0415 —1.4456 14.1545 —1.3980 13.9229

H10A M2E (8 H48%) 2006. 4.
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the proposed method was efficient for the reduced
-order control and the accuracy was very close to

exact only after two iterations.

Notation

A=(2(n+1D)x2(n+1)) system matrix in state space

B=(2(n+1)x1) control vector in state space

€;= damping of active tuned mass damper

C=(nxn) damping matrix of the full model of
building

C=((n+Dx(n+1) damping matrix of the full
model of building with ATMD

D =(nxn) dynamic stiffness matrix of the full
model of building; (nx1) force distribution
vector of building

D= ((n+Dx1) force distribution vector of building
with ATMD

fc = active control force

F =(nx1) external force vector of building

F=((n+1)x1) external force vector of building
with ATMD

I =(nxn) unit matrix

k, = stiffness of active tuned mass damper

K =(nxn) stiffness matrix of the full model (of
building)

K=((n+Dx(n+1)) stiffness matrix of the full
model of building with ATMD

m,; = mass of active tuned mass damper

M =(nxn) mass matrix of the full model (of
building)

M =((n+Dx(n+1)) mass matrix of the full model
of building with ATMD

P=Q2n+1)x2(n+1)) Riccati matrix

g = eigenvalue shifting value

Q=2(n+1)x2(n+1)) weighting matrix of state var-
iable

R=(sxm) dynamic condensation matrix

§=Q2(n+1)x2(n+1) weighting matrix of state var-
iable

U = weighting of control force

V =(2(n+1)x1) load vector in state space

X =(nx1) displacement vector of building

X =((n+1x1) displacement vector of building with
ATMD

Z=2n+1)x1) state vector

@ =(nxn) eigenvector matrix

A =(nxn) eigenvalue matrix with eigenvalue shift-
ing

A, = the lowest eigenvalue of the full model

@ =frequency (rad/s)

Q =(nxn) eigenvalue matrix

Subscripts

m= parameters associated with the master degrees
of freedom

R = parameters associated with the reduced model

§= parameters associated with the slave degrees

of freedom

Superscripts

-1 = inverse of matrix

e
It

initial approximation

ith approximation

.
1l

T = matrix transpose
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