Effects of (+)-Eudesmin from the Stem Bark of *Magnolia kobus* DC. var. *borealis* Sarg. on Neurite Outgrowth in PC12 Cells

Yoo Jung Yang, Jae In Park, Hak-Ju Lee, Seon-Mi Seo, Oh-Kyu Lee, Don-Ha Choi, Ki-Hyon Paik, and Myung Koo Lee

College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju 361-763, Korea, 1College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763, Korea, 2Division of Wood Chemistry and Microbiology, Korea Forest Research Institute, Seoul 130-712, Korea, and 3College of Life and Environment Sciences, Korea University, Seoul 136-701, Korea

(Received September 7, 2006)

(+)-Eudesmin [4,8-bis(3,4-dimethoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane] was isolated from the stem bark of *Magnolia kobus* DC. var. *borealis* Sarg. and found to have neurogenic activity. 50 μM (+)-eudesmin induced neurite outgrowth and enhanced nerve growth factor (NGF)-mediated neurite outgrowth from PC12 cells. At this concentration, (+)-eudesmin also enhanced NGF-induced neurite-bearing activity and this activity was partially blocked by various protein kinase inhibitors. These included PD98059, a mitogen-activated protein kinase (MAPK) kinase inhibitor, GF109203X, a protein kinase C (PKC) inhibitor and H89, a protein kinase A (PKA) inhibitor. These results suggest that (+)-eudesmin can induce neurite outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways.

Key words: (+)-Eudesmin, *Magnolia kobus*, Neurite outgrowth, PC12 cells

INTRODUCTION

Neurotrophic factors such as nerve growth factors (NGF) stimulate neurite outgrowth in neuronal cells and play an important role in survival and maintenance in the central nervous system (Patrick et al., 1996). It was therefore, proposed that NGF and NGF-like agents could be used therapeutically in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases (Connor and Dragunow, 1998).

The chemical components of *Magnolia kobus* DC. var. borealis Sarg. (*M. kobus*, Magnoliaceae) have antioxidative and antibacterial activities (Kim, 1999). The major components of *M. kobus* are lignans (eudesmin, epieudesmin, yangambin, kobusine, sesamin and phyllygenin), sesquiterpenes (kobusimin A and 9-oxonerolidol) and essential oils (d-limonene, p-cymene, 1-camphor and d-nerolidol) (Kim, 1999; Fujita et al., 1975; Iida et al., 1982). Eudesmin and kobusine have been shown to have antioxidant activity (Kim, 1999).

Rat adrenal pheochromocytoma PC12 cell lines differentiated and showed de novo extension of neurites in the presence of NGF. Therefore, these cells have been used as a model system for sympathetic neuron-like cells (Gysbers and Rathbone, 1992).

As a part of our ongoing search for neurotrophic agents from natural resources, we found that a methanol (MeOH) extract from the stem bark of *M. kobus* induced neurite outgrowth in PC12 cells. In this study, therefore, the MeOH extract was subjected to bioactivity-guided fractionations to isolate the bioactive components. The final purified bioactive substance, which induced neurite outgrowth of PC12 cells, was identified as a lignan derivative, 4,8-bis (3,4-dimethoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane [(+) eudesmin] (Fig. 1), and its neurotogenic mechanism was elucidated in part.

MATERIALS AND METHODS

Materials

The stem barks of *M. kobus* were collected from Jinju, Kyungnam, Korea and a voucher specimen was deposited at the herbarium of the Division of Wood Chemistry and...
Microbiology, Korea Forest Research Institute (Seoul, Korea). RPMI 1640, donor horse serum (HS) and fetal bovine serum (FBS) were obtained from Gibco BRL (Grand Island, NY, U.S.A.), 2.5S NGF, poly-L-lysine, antibiotics, PD98059, GF109203X and H89 were from Sigma Chemical Co. (St. Louis, MO, U.S.A.). All other reagents were of analytical grade.

Separation and identification of (+)-eudesmin

The air-dried stem barks of M. kobus (5 kg) were extracted with EtOH, and then the dried EtOH extract (510 g) was partitioned in turn with CH2Cl2, Et2O, EtOAc and BuOH. The Et2O extract (85 g) was chromatographed over Sephadex LH-20 (Pharmacia, 60×4.5 cm; MeOH-EtOH=3.7, v/v) and silica gel column (40-100 mesh, 27.5×7.0 cm, Fischer Scientific; benzene-EtOAc=8:1, v/v) to obtain eight fractions (MKBE-2-1-MKBE-2-8). The MKBE-2-5 fraction (3.3 g) was further chromatographed over Sephadex LH-20 (20-100 μm, 50×4.5 cm, MeOH) to obtain four fractions (MKBE-2-5-1-MKBE-2-5-4). (+)-Eudesmin (120 mg) was isolated from the MKBE-2-5-2 fraction. Optical rotation was obtained using a JASCO p-1020 polarimeter (JASCO, Ltd., Tokyo, Japan). 1H- and 13C-NMR, 1H-1H correlation spectroscopy (COSY), NOE spectroscopy (NOESY) and heteronuclear multiple quantum coherence (HMQC) NMR spectra were recorded on a Varian UI 500 spectrophotometer (Varian, Inc., Palo Alto, U.S.A.). EI-MS was measured on a JEOL JMS-600W mass spectrophotometer (JEOL, Ltd., Yamagata, Japan).

Cell culture and assay for neurite outgrowth

PC12 cells were routinely grown in RPMI 1640 medium supplemented with 10% heat-inactivated HS and 5% heat-inactivated FBS (Greene and Tischler, 1976). The morphology of PC12 cells was observed according to the method described previously (Sano and Kitajima 1998). PC12 cells were dissociated by incubation with 1 mM EGTA in phosphate-buffered saline for 1 h and were seeded in 24-well culture plates (ca. 2×10⁴ cells/well) coated with poly-L-lysine. After 24 h, the medium was changed to an appropriate test medium for neurite-bearing containing 2% HS and 1% FBS. Neurite outgrowth and neurite-bearing from PC12 cells were monitored under a phase-contrast microscope. Processes with lengths equivalent to one or more diameters of a cell body were scored as neurites. A minimum of 100 cells were examined for each data point. 2 ng/mL, 2.5S NGF was used for neurite-bearing and 30 ng/mL 2.5S NGF for neurite outgrowth. The data was analyzed by one-way ANOVA followed by Tukey's test for significance.

RESULTS AND DISCUSSION

A bioactive component, which induced neurite outgrowth in PC12 cells, was isolated from M. kobus and identified as a 4,8-bis(3,4-dimethoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane [(+)-eudesmin] (Fig. 1); mp 107-108°C. [α]D25+50.94 (c = 0.58, acetone). EI-MS m/z: 386 (M+), 249, 219, 189, 177, 165, 1H-NMR (500 MHz, acetone-d6): δ 3.10-3.14 (2H, m, ᵃ-H, ᶇ-H), 3.82 (6H, s, 4' and 4'-OCH₃), 3.84 (6H, s, 3' and 3'-OCH₃), 3.85 (2H, dd, J = 4.0, 11.0 Hz, ᵃ-Hb, ᶇ-Hb), 4.25 (2H, dd, J = 5.5, 8.0 Hz, ᵃ-Ha, ᶇ-Ha), 4.73 (2H, d, J = 4.5 Hz, ᵈ-H, ᶅ-H), 6.92 (2H, d, J = 8.5 Hz, ᵈ-H, ᶦ-H), 6.94 (2H, dd, J = 2.0, 6.0 Hz, ᵇ-H, ᶨ-H), 7.02 (2H, d, J = 1.0 Hz, ᵈ-H, ᶪ-H), 7.17 (2H, s, ᵇ-H, ᶪ-H), 7.24 (2H, t, J = 7.8 Hz, ᵇ-H, ᶪ-H), 8.04 (2H, d, J = 8.5 Hz, ᵇ-H, ᶪ-H), 8.17 (2H, d, J = 9.0 Hz, ᵇ-H, ᶪ-H), 8.28 (2H, s, 3'-OCH₃).

A 30 µM (+)-eudesmin alone induced neurite-bearing activity in a concentration-dependent manner in PC12 cells incubated for 24-36 h in a normal medium including 10% HS and 5% FBS (Fig. 2).

In addition, 20-100 µM (+)-eudesmin induced neurite outgrowth from PC12 cells incubated in normal medium for 96 h. 50 µM (+)-eudesmin significantly induced neurite elongation (Fig. 3B). This concentration of (+)-eudesmin in association with NGF (2 ng/mL) also enhanced neurite outgrowth compared with (+)-eudesmin treatment alone (Fig. 3D). PC12 cells exposed to (+)-eudesmin (50 µM) and/or (+)-eudesmin associated with NGF (2 ng/mL) also formed long neurites, which extended to the neighboring cells over distances of 50 µm. However, when PC12 cells...
Fig. 2. Effects of (+)-eudesmin on neurite-bearing activity in PC12 cells. The number of neurite-bearing cells was expressed as a percentage of the maximum number in response to NGF (30 ng/mL, 100%) in the absence of (+)-eudesmin. The results represent mean ± SEM of four experiments. Statistically significant difference is indicated in the figure: # p<0.01, ## p<0.001, compared to the untreated cells (ANOVA followed by Tukey’s test).

Fig. 3. Effects of (+)-eudesmin and nerve growth factor (NGF) on the morphology of PC12 cells. PC12 cells were treated for 96 h without (A, C) or with (B, D) (+)-eudesmin (50 μM) in the absence (A, B) or presence (C, D) of NGF (2 ng/mL), respectively. Scale bar 50 μm.

PC12 cells.
Various neurotogenic agents, AIT-082 (100 mM), nerfin I (0.5 μg/mL), arocilor 1254 (25 μg/mL), SR57746A (0.5 μM) and nortosinone (100 μM) enhance NGF-mediated neurite outgrowth in PC12 cells (Middlemiss et al., 1995; Hirao et al., 1995; Angus and Contreras, 1995; Pradines et al., 1995; Li et al., 1999). (+)-Eudesmin showed a similar neurotogenic activity.

NGF induces cell differentiation and neurite outgrowth by the formation of large neurites associated with NGF TrkA receptors. This effect of NGF can be mimicked by direct activation with either PKA (Mann et al., 1989; Sanchez et al., 2004) or PKC (Doherty et al., 1988; Leprince et al., 1996; Tsuji et al., 2001). Neurite outgrowth of PC12 cells was also induced by activation of extracellular signal-regulated kinase (ERK) and p38 MAPK (Tsuji et al., 2001). In addition, the activation of TrkA receptor kinase induces phosphorylation of SHC, phospholipase C and phosphodiesterase 3-kinase (Obermeier et al., 1994; Ashcroft et al., 1999), followed by activation of RAS-ERK cascade (Wood et al., 1992). The activation of RAS-ERK cascade is also sufficient for NGF-induced neuronal differentiation of PC12 cells (Pang et al., 1995; Tsuji et al., 2001). Therefore, induction of neurite outgrowth in PC12 cells has been found to be mediated by the MAPK, PKA and PKC pathways.
50 µM (+)-eudesmin alone showed a significant neurite-bearing activity in the appropriate test medium for 24-36 h (Fig. 4). However, (+)-eudesmin-induced neurite-bearing activity and its enhancement of NGF-neurite-bearing activity were partially blocked by a representative MAPK/ERK kinase inhibitor PD98059, by a PKC inhibitor GF109203X and by a PKA inhibitor H89 (Fig. 4). This data suggested that (+)-eudesmin-induced neurite outgrowth was partially mediated by amplification of the up-stream steps of MAPK, PKC and PKA in the intracellular signaling pathway. In addition, (+)-eudesmin at concentrations of up to 150 µM did not exhibit any cell cytotoxicity to PC12 cells according to MTT assays. 20-100 µM (+)-Eudesmin also had no stimulatory effects on dopamine biosynthesis in PC12 cells (data not shown).

In conclusion, (+)-eudesmin induced neurite outgrowth and enhanced neurite outgrowth in association with NGF in PC12 cells. The in vivo applications of (+)-eudesmin and its mechanism need to be studied further.

ACKNOWLEDGEMENTS

This study was supported by a grant of the Technology Development Program for Agriculture and Forestry, Agricultural R&D Promotion Center/Ministry of Agriculture and Forestry, Republic of Korea (Contract/grant number: 20013012; 2002-2004). The authors thank for the Korea Basic Science Institute in Seoul for the NMR experiments.

REFERENCES

Kim, Y. G., Studies on the antimicrobial activities of the extractives from Magnolia (Magnolia kobus DC. var. borealis Sarg.). Mokchae Konghak 27, 105-114 (1999).

