참고문헌
- Adlercreutz, H. Western diet and western diseases: some hormonal and biochemical mechanisms and associations. Scand. J. Clin. Lab. Invest. 50, 3-23 (1990) https://doi.org/10.1080/00365519009085798
- Fotsis, T. et al. A dietary-derived inhibitor of in vitro angiogenesis. Proc. Natl. Acad. Sci. 90, 2690-2694 (1993)
- Barnes, S. & Peterson, T.G. Biochemical targets of the isoflavone genistein in tumor cell lines. Pro. Soc. Exp. Bio. Med. 208, 103-108 (1995)
- Constantinou, A.I. & Huberman, E. Genistein as an inducer of tumor cell differentiation: possible mechanism of action. Pro. Soc. Exp. Bio. Med. 125, 109-115 (1995)
- Peterson, G. Evaluation of the biochemical targets of genistein in tumor cell. J. Nutr. 125, 784s-789s (1995)
- Matsukawa, Y. et al. Genistein arrests cell cycle progression at G2-M. Cancer Res. 53, 1328-1331 (1993)
- Kuzumaki, T., Kobayashi, T. & Ishikawa, K. Genistein induces p21 (Cip1/WAF1) expression and blocks the G1 to S phase transition in mouse fibroblast and melanoma cells. Biochem Biophys Res Commun. 251, 291-295 (1998) https://doi.org/10.1006/bbrc.1998.9462
- Koroma, B.M. & de Juan, E Jr. Inhibition of protein tyrosine phosphorylation in endothelial cells: relationship toantiproliferative action of genistein. Biochem. Soc. Trans. 25, 35-40 (1997) https://doi.org/10.1042/bst0250035
- Kim, H., Peterson, T.G. & Barnes, S. Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor beta signaling pathways. Am. J. Clin. Nutr. 68, 1418 -1425 (1998) https://doi.org/10.1093/ajcn/68.6.1418S
- Bouker, K.B. & Hilakivi-Clarke, L. Genistein: Does it prevent or promote breast cancer? Environ. Health Perspect. 108, 701-708 (2000) https://doi.org/10.2307/3434722
- Markiewicz, L. et al. In vitro bioassays of non-steroidal phytoestrogen. J. Steroid Biochem. Mol. Biol. 45, 399-405 (1993) https://doi.org/10.1016/0960-0760(93)90009-L
- Lobenhofer, E.K. & Marks, J.R. Estrogen-induced mitogenesis of MCF-7 cells does not require the induction of mitogen-activated protein kinase activity. J. Steroid Biochem. Mol. Biol. 75, 11-20 (2000) https://doi.org/10.1016/S0960-0760(00)00132-1
- Migliaccio, A., Di Domenico, M. & Castoria, G. Tyrosine kinase/p21ras/MAPK pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J. 15, 1292-1300 (1996)
- Prifti, S. et al. Synthetic estrogen-mediated activation of JNK intracellular signaling molecule. Gynecol. Endocrinol. 15, 135-141 (2001) https://doi.org/10.1080/713602805
- Ahamed, S. et al. Signal transduction through the Ras/Erk pathway is essentialfor the mycoestrogen zearalenone-induced cell-cycle progression in MCF-7 cells. Mol. Carcinog. 30, 88-98 (2001) https://doi.org/10.1002/1098-2744(200102)30:2<88::AID-MC1017>3.0.CO;2-E
- Messina, M.J. & Loprinzi, C.L. Soy for Breast Cancer Survivors: A Critical Review of the Literature. J. Nutr. 131, 3095-3108 (2001)
- Burow, M.E. et al. Oestrogen-mediated suppression of tumour necrosis factor alpha-induced apoptosis in MCF-7 cells: subversion of Bcl-2 by anti-oestrogens. J. Steroid Biochem. Mol. Biol. 78, 409-418 (2001) https://doi.org/10.1016/S0960-0760(01)00117-0
- Harris, M.H. & Thompson, C.B. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ. 7, 1182-1191 (2000) https://doi.org/10.1038/sj.cdd.4400781
- Berchem, G.J. et al. Androgens induce resistance to Bcl-2-mediated apoptosis in LNCaP prostate cancer cells. Cancer Res. 554, 735-738 (1995)
- Mandal, M. & Kumar, R. Bcl-2 expression regulates sodium butyrate-induced apoptosis in human MCF-7 breast cancer cells. Cell Growth Differ. 73, 311-318 (1996)
- Lim, K.B. et al. Induction of apoptosis in mammary gland by a pure anti-estrogen ICI 182,780. Breast Cancer Res. Treat. 68, 127-138 (2001) https://doi.org/10.1023/A:1011929222555
- Hsieh, C.Y. et al. Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res. 58, 3833-3838 (1998)
- Yue, W. et al. Activation of the MAPK pathway enhances sensitivity of MCF-7 breast cancer cells to the mitogenic effect of estradiol. Endocrinology 143, 3221-3229 (2002) https://doi.org/10.1210/en.2002-220186
- Jeng, M.H. et al. Role of MAP kinase in the enhanced cell proliferation of long term estrogen deprived human breast cancer cells. Breast Cancer Res. Treat. 62, 167-175 (2000) https://doi.org/10.1023/A:1006406030612
- Kinyamu, H.K. & Archer, T.K. Estrogen receptor-dependent proteasomal degradation of the glucocorticoid receptor is coupled to an increase in mdm2 protein expression. Mol Cell Biol. 23, 5867-5881 (2003) https://doi.org/10.1128/MCB.23.16.5867-5881.2003
- Bonapace, I.M. et al. 17beta-Estradiol overcomes a G1 block induced by HMG-CoA reductase inhibitors and fosters cell cycle progression without inducing ERK-1 and -2 MAP kinases activation. Oncogene 12, 753-763 (1996)
- Li, Y. et al. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene 18, 3166 -3172 (1999) https://doi.org/10.1038/sj.onc.1202650
- Constantinou, A.I., Kamath, N. & Murley, J.S. Genistein inactivates bcl-2, delays the G2/M phase of the cell cycle, and induces apoptosis of human breast adenocarcinoma MCF-7 cells. Eur. J. Cancer 34, 1927-1934 (1998) https://doi.org/10.1016/S0959-8049(98)00198-1
- Xu, J. & Loo, G. Different effects of genistein on molecular markers related to apoptosis in two phenotypically dissimilar breast cancer cell lines. J. Cell. Biochem. 82, 78-88 (2001) https://doi.org/10.1002/jcb.1147
- Leung, L.K. & Wang, T.T. Bcl-2 is not reduced in the death of MCF-7 cells at low genistein concentration. J. Nutr. 130, 2922-2926 (2000)
- Fog, C.K., Christensen, I.J. & Lykkesfeldt, A.E. Characterization of a human breast cancer cell line, MCF-7/ RU58R-1, resistant to the pure antiestrogen RU 58,668. Breast Cancer Res Treat. 91, 133-144 (2005) https://doi.org/10.1007/s10549-004-5871-y