Characterization of colloid/interface properties between clay and EAF dust

점토와 전기로 제강분진의 콜로이드/계면 특성 분석

  • Lee, Jee-Young (Department of Materials Engineering, Kyonggi University) ;
  • Lee, Ki-Gang (Department of Materials Engineering, Kyonggi University) ;
  • Kim, Yoo-Taek (Department of Materials Engineering, Kyonggi University) ;
  • Kang, Seung-Gu (Department of Materials Engineering, Kyonggi University) ;
  • Kim, Jung-Hwan (Department of Materials Engineering, Kyonggi University)
  • Published : 2006.04.30

Abstract

The leaching behavior of heavy metal ions with pH and colloid/interface property was analyzed by ICP and SEM. The heavy metals in EAF dust are 'amphoteric metal' and the heavy metal ions leached a little at pH 10. And the leaching concentrations of heavy metals at pH 12 were higher than the that at pH 8. The leaching concentrations of heavy metal ion were decreased with adding the clay to the EAF dust. Especially, the leaching concentrations of heavy metal ion were effectively decreased at pH 12. The observation of colloid/interface properties shows that the soluble silicon hydroxide from clay at pH 12 was precipitated at the surface of the heavy metal and clay particles. This silicon hydroxide precipitates were named the PSHP. The leaching concentrations of heavy metal ion were effectively decreased by the formation of PSHP when adding the clay to the EAF dust and controlling the pH of the slurry at 12.

중금속 이온의 용출거동은 콜로이드/계면 성질에 의존하는데, 이를 알아보기 위해 ICP와 SEM 분석을 하였다. 전기로 제강분진에 포함된 중금속은 '양쪽성 금속'으로 pH 10에서 중금속이 가장 적게 용출되는 것을 알 수 있었고 pH 8보다 pH 12에서 중금속 이온이 상당량 용출되어 나왔다. 그리고 전기로 제강분진에 점토를 첨가함으로써 중금속 이온의 용출이 감소하는 것을 알 수 있었다. 특히 pH 12의 경우에 pH 8에 비해서 중금속 이온의 용출이 큰 폭으로 감소하였으며 콜로이드계면 성질 관찰 결과, 점토의 경우 pH 12에서 점토에서 녹아나온 Si 수화물이 점토 입자표면을 둘러싸고 있음을 관찰할 수 있었다. 전기로 제강분진과 점토의 혼합 슬러리에서 pH 8의 경우보다 pH 12에서 중금속 이온의 농도가 크게 감소한 것은 PSHP의 형성에 의한 것으로 사료된다.

Keywords

References

  1. J.R. Conner and S.L. Hoeffner, 'Critical review of stabilization/solidification technology', Crit. Rev. Environ. Sci. Technol. 28(4) (1998)
  2. J.-S. Hwang, C.-H. Oh and C.-T. Lee, 'Leaching of valuable metal and separation of Zn component from the solid waste EAF dust', J. Kor. Solid Wastes Engineering Society 13(1) (1996) 96
  3. K.S. Choi, 'Removal of heavy metal ions from wastewater by ion exchange', J. of KSEE 10(2) (1988) 25
  4. J.-S. Kim, J.-R. Lee, S.-W Han, I.-G. Hwang and J.-H. Bae, 'Preparation of inorganic coagulants using red mud', J. of KSEE 22(11) (2000) 2085
  5. Bae Hae R. and Cho Soon H., 'Colidification of heavy metal wastes using clay', J. of KSEE 14(3) (1992) 233
  6. M.A. Sorensen, E.P.B. Mogensen, K. Lundtorp, D.L. Jensen and T.H. Christensen, 'High temperature cotreatment of bottom ash and stabilized fly ashes from waste incineration', Waste Management 21 (2001) 555 https://doi.org/10.1016/S0956-053X(00)00113-6
  7. Y.-S. Shim, S.-W. Rhee and W.-K. Lee, 'Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan', Waste Management 25(5) (2005) 473 https://doi.org/10.1016/j.wasman.2005.03.002
  8. Constantino F. Pereira, Miguel Rodriguez-Pinero and Jose Vale, 'Solidification/stabilization of electric arc furnace dust using coal fly ash Analysis of the stabilization process', J. of Hazardous Materials B82 (2001) 183 https://doi.org/10.1016/S0304-3894(00)00359-9
  9. H.N. Cheong, K.G. Lee and H.M. Jang, 'Effects of colloid/interface variables on slip properties and densification behaviors of mullite', Ceramic Transactions 12 (1990) 395
  10. L.E. Campbell, U.S. Pat. 3,715,224. Corning Class Works (1973)
  11. Janes S. Reed, 'Principles of ceramics Processing (Second Edition)', John Wiley & Sons, Inc. (1995)
  12. P.C. Yates. U.S. Pat. 3,637,775. Du Pont (1972)
  13. K.G. Lee and D.W. Kim, 'Bending strength and microstructure of brick body from fly-ash and clay mixture', Journal of Korean Association of Crystal Growth 3(1) (1993) 45