RELATIONS BETWEEN DECOMPOSITION SERIES AND TOPOLOGICAL SERIES OF CONVERGENCE SPACES

Sang Ho Park

ABSTRACT. In this paper, we will show some relations between decomposition series \(\{ \pi^\alpha q : \alpha \text{ is an ordinal} \} \) and topological series \(\{ r_\alpha q : \alpha \text{ is an ordinal} \} \) for a convergence structure \(q \) and the formula \(\pi^\beta(\tau_\alpha q) = \pi^{\omega\alpha} \beta q \), where \(\omega \) is the first limit ordinal and \(\alpha \) and \(\beta(\geq 1) \) are ordinals.

I. Introduction and Preliminaries

A convergence structure \(q \) on a set \(X \) defined by [1] in 1964 is a function from the set \(F(X) \) of all filters on \(X \) into the set \(P(X) \) of all subsets of \(X \), satisfying the following conditions:

1. \(x \in q(x) \) for all \(x \in X \);
2. \(\mathcal{F} \leq \mathcal{G} \) implies \(q(\mathcal{F}) \subseteq q(\mathcal{G}) \);
3. \(x \in q(\mathcal{F}) \) implies \(x \in q(\mathcal{F} \cap \mathcal{x}) \),

where \(\mathcal{x} \) denotes the principal ultrafilter containing \(\{ x \} \); \(\mathcal{F} \) and \(\mathcal{G} \) are in \(F(X) \). Then the pair \((X, q) \) is called a convergence space. If \(x \in q(\mathcal{F}) \), then we say that \(\mathcal{F} \) \(q \)-converges to \(x \). The filter \(\mathcal{V}_q(x) \) obtained by intersecting all filters which \(q \)-converge to \(x \) is called the \(q \)-neighborhood filter at \(x \). If \(\mathcal{V}_q(x) \) \(q \)-converges to \(x \) for each \(x \in X \), then \(q \) is said to be pretopological and the pair \((X, q) \) is called a pretopological convergence space.

Received January 17, 2006.
2000 Mathematics Subject Classification: 54A05, 54A10, 54A20.
Key words and phrases: convergence structure(space), pretopological convergence structure(space), decomposition series, topological series.
Let $C(X)$ be the set of all convergence structures on X, partially ordered as follows:

$$q_1 \leq q_2 \text{ iff } q_2(F) \subseteq q_1(F) \text{ for all } F \in F(X).$$

If $q_1 \leq q_2$, then we say that q_1 is coarser than q_2, and q_2 is finer than q_1. By [2], we know that if q_1 is pretopological, then

$$q_1 \leq q_2 \text{ iff } \forall q_1(x) \leq \forall q_2(x) \text{ for all } x \in X.$$

For any $q \in C(X)$, we define a related convergence structure $\pi(q)$, as follows:

$$x \in \pi(q)(F) \text{ iff } \forall q(x) \leq F.$$

In this case, $\pi(q)$ is called the pretopological modification of q.

In 1973, Kent and Richardson [3] introduced the associated decomposition series $\{\pi^n q : \alpha \text{ is an ordinal}\}$ defined by

$$\pi^n q(F) \overset{\alpha}{\rightarrow} x \iff \forall q^\alpha (x) \leq F, \text{ for each } F \in F(X),$$

where

$$A \in \forall q^\alpha (x) \iff x \in I_q^\alpha (A), \text{ and}$$

$$I_q^\alpha (A) = \begin{cases} I_q(I_q^{\alpha - 1}(A)), & \text{if } \alpha - 1 \text{ exists,} \\ \cap_{\beta < \alpha} I_q^\beta (A), & \text{if } \alpha \text{ is a limit ordinal.} \end{cases}$$

In 1996, Park [4] studied the n-th pretopological modification $\pi^n q$ and quotient map for a convergence space q.

In 1999, for a convergence space (X, q) with a second convergence structure p, Wilde [5] introduced that (X, q) is "p-topological" iff $\mathcal{F} \overset{q}{\rightarrow} x$ implies $\forall_p(\mathcal{F}) \overset{q}{\rightarrow} x$. Also they showed that there is a finest p-topological convergence structure $\tau_p q$ on X coarser than q and $\mathcal{F} \overset{\tau_p q}{\rightarrow} x$ iff there exist $G \overset{q}{\rightarrow} x$ such that $\mathcal{F} \geq \forall_p^n (G)$, for some $n \in N$. Furthermore, they induced the topological series for q, the descending ordinal sequence $\{\tau_\alpha q : \alpha \text{ is an ordinal}\}$ defined recursively on X as follows:
Decomposition Series and Topological Series

\[\tau_0 q = q \]
\[\tau_1 q : F \xrightarrow{\tau_1 q} x \iff \exists G \xrightarrow{q} x \text{ and } n \in N \text{ such that } F \geq V^n_G(G) \]
\[\tau_2 q : F \xrightarrow{\tau_2 q} x \iff \exists G \xrightarrow{q} x \text{ and } n \in N \text{ such that } F \geq V^n_{\tau_1 q}(G) \]
\[\tau_3 q : F \xrightarrow{\tau_3 q} x \iff \exists G \xrightarrow{q} x \text{ and } n \in N \text{ such that } F \geq V^n_{\tau_2 q}(G) \]
\[\vdots \]
\[\tau_\alpha q : F \xrightarrow{\tau_\alpha q} x \iff \exists G \xrightarrow{q} x, n \in N \text{ and } \beta < \alpha \text{ such that } F \geq V^n_{\tau_\beta q}(G). \]

In this paper, we will show some relations between decomposition series \(\{\pi^\alpha q : \alpha \text{ is an ordinal} \} \) and topological series \(\{\tau_\alpha q : \alpha \text{ is an ordinal} \} \) for a convergence structure \(q \) and the formula \(\pi^\beta(\tau_\alpha q) = \pi^{\omega^\alpha \beta} q \), where \(\omega \) is the first limit ordinal and \(\alpha \) and \(\beta(\geq 1) \) are ordinals.

2. Decomposition Series, the Neighborhood and Interior Filter of a Filter

We shall summarize some results from [3] and other sources using more modern notation and terminology. We are mainly interested in comparing properties of decomposition series with those of the topological series, which will be introduced in [5].

Let \((X, q)\) be a convergence space. For \(A \subseteq X \), we recall that \(I_q^0(A) = A, I_q^1 = I_q(A) = \{x : A \in V_q(x)\} \).

Given an ordinal number \(\alpha \geq 1 \), let \(I_q^\alpha \) and \(cl_q^\alpha \) denote the \(\alpha \)th iterations of interior operator and closure operator for \(q \), respectively. For \(A \subseteq X \), we inductively define:

\[I_q^\alpha(A) = \begin{cases} I_q(I_q^{\alpha-1}(A)), & \text{if } \alpha - 1 \text{ exists}, \\ \cap_{\beta<\alpha} I_q^\beta(A), & \text{if } \alpha \text{ is a limit ordinal}. \end{cases} \]

\[cl_q^\alpha(A) = \begin{cases} cl_q(cl_q^{\alpha-1}(A)), & \text{if } \alpha - 1 \text{ exists}, \\ \cup_{\beta<\alpha} cl_q^\beta(A), & \text{if } \alpha \text{ is a limit ordinal}. \end{cases} \]
PROPOSITION 2.1. ([5]). For every ordinal α and $A \subseteq X$, $X \setminus cl^\alpha_q (A) = I^\alpha_q (X \setminus A)$.

If (X, q) is a convergence space and $\alpha \geq 1$, let π^α_q be the pretopology on X whose neighborhood filter is $\mathcal{V}^\alpha_q (x)$, that is, $\mathcal{V}^\alpha_q (x) = \mathcal{V}^\alpha_q (x)$, where $A \in \mathcal{V}^\alpha_q (x)$ iff $x \in I^\alpha_q (A)$. Since $\beta < \alpha$ implies $I^\alpha_q (A) \subseteq I^\beta_q (A)$, it follows that $\mathcal{V}^\alpha_q (x) \leq \mathcal{V}^\beta_q (x)$, and consequently $\pi^\alpha_q \leq \pi^\beta_q$.

Definition 2.2. ([3], [5]). The descending chain $\{\pi^\alpha_q: \alpha \geq 1\}$ of pretopologies on X is called the decomposition series of (X, q).

Clearly $\pi^1_q = \pi q$ is the pretopological modification of q, which is the finest pretopological convergence structure on X coarser than q.

Definition 2.3. ([5]). For any ordinal α, $p \in C(X)$ and $\mathcal{G} \in F(X)$, we define the neighborhood filter $\mathcal{V}^\alpha_p (\mathcal{G})$ and the interior filter $I^\alpha_p (\mathcal{G})$ of \mathcal{G}, respectively, as follows:

$$\mathcal{V}^\alpha_p (\mathcal{G}) = \mathcal{V}^\alpha_p (\mathcal{G}) = \{ A \subseteq X : I^\alpha_p (A) \in \mathcal{G} \}.$$

$$I^\alpha_p (\mathcal{G}) = I_p (\mathcal{G}), \; I^\alpha_p (\mathcal{G}) = \{ I^\alpha_p (G) : G \in \mathcal{G} \}$$ if $I_p (\mathcal{G}) \neq \emptyset$, $\forall G \in \mathcal{G}$,

where $[\mathcal{B}]$ means the filter generated by B if B is a filter base.

Then we know that if $\alpha < \beta$, then $\mathcal{V}^\beta_p (\mathcal{G}) \leq \mathcal{V}^\alpha_p (\mathcal{G}) \leq \mathcal{G} \leq I^\alpha_p (\mathcal{G}) \leq I^\beta_p (\mathcal{G})$.

PROPOSITION 2.4. For any ordinals α, β, $x \in X$ and $A \subseteq X$,

(1) $I^{\alpha + \beta}_q (A) = I^\beta_q (I^\alpha_q (A))$.

(2) $\mathcal{V}^{\alpha + \beta}_q (x) = \mathcal{V}^\alpha_q (\mathcal{V}^\beta_q (x))$.

Proof. (1) Let α be a fixed ordinal. We use transfinite induction on β. If $\beta = 1$, $I^{\alpha + 1}_q = I^\alpha_q (I^\alpha_q (A))$ follows by definition. Next, let β be any arbitrary ordinal.

Case 1. Assume that there exists $\bar{\beta}$ such that $\bar{\beta} + 1 = \beta$. By the induction hypothesis, $I^{\alpha + \bar{\beta}} q (A) = I^\bar{\beta}_q (I^\alpha_q (A))$, and so $I^{\alpha + \beta}_q (A) = I^{\alpha + \bar{\beta} + 1}_q (A) = I^\beta_q (I^{\alpha + \bar{\beta}} q (A)) = I^\beta_q (I^\alpha_q (I^\alpha_q (A))) = I^\beta_q (I^\alpha_q (A))$.

Case 2. Assume that β is a limit ordinal. $I^{\alpha + \beta}_q (A) = \cap_{\gamma \leq \beta} I^{\alpha + \gamma}_q (A) = I^\beta_q (I^\alpha_q (A)) = I^\beta_q (I^\alpha_q (A))$.
(2) \(A \in \mathcal{V}_q^{\alpha+\beta}(x) \iff x \in \mathcal{I}_q^{\alpha+\beta}(A) \iff x \in \mathcal{I}_q^\beta(I_q^\alpha(A)) \iff \mathcal{I}_q^\alpha(A) \in \mathcal{V}_q^\beta(x) \iff A \in \mathcal{V}_q^\alpha(\mathcal{V}_q^\beta(x)) \). \qed

Corollary 2.5. For any ordinals \(\alpha, \beta, \) and \(\mathcal{F} \in \mathcal{F}(X) \),

1. \(\mathcal{I}_q^{\alpha+\beta}(\mathcal{F}) = \mathcal{I}_q^\beta(I_q^\alpha(\mathcal{F})) \) if these are filters.
2. \(\mathcal{V}_q^{\alpha+\beta}(\mathcal{F}) = \mathcal{V}_q^\alpha(\mathcal{V}_q^\beta(\mathcal{F})) \).

3. \(p \)-Topological Convergence Spaces

In this section, we will summary some propositions about \(p \)-topological convergence space of [5] and [6], and change two propositions, which are the following Theorem 3.4 and 3.7.

Henceforth \((X, q)\) means a convergence space equipped with a second convergence structure \(p \).

Definition 3.1. ([5]). A convergence space \((X, q)\) is \(p \)-topological iff \(\mathcal{F} \rightarrow^q x \) implies that there exists \(\mathcal{G} \rightarrow^q x \) such that \(\mathcal{F} \geq I_p(\mathcal{G}) \).

Proposition 3.2. ([5]). \((X, q)\) is \(p \)-topological, iff \(\mathcal{F} \rightarrow^q x \implies \mathcal{V}_p(\mathcal{F}) \rightarrow^q x \).

Proposition 3.3. ([5]). Let \((X, q)\) be a pretopological convergence. Then \((X, q)\) is \(p \)-topological iff \(\mathcal{V}_q(x) = I_p(\mathcal{V}_q(x)) \).

Proof. \((\implies)\) Since \(\mathcal{V}_q(x) \rightarrow^q x \) and \((X, q)\) is \(p \)-topological, there exists \(\mathcal{G} \rightarrow^q x \) such that \(\mathcal{V}_q(x) \geq I_p(\mathcal{G}) \). Then \(\mathcal{G} \geq \mathcal{V}_q(x) \), so \(\mathcal{G} \geq I_p(\mathcal{G}) \). This implies \(\mathcal{G} = \mathcal{V}_q(x) = I_p(\mathcal{G}) = I_p(\mathcal{V}_q(x)) \).

\((\impliedby)\) Let \(\mathcal{F} \rightarrow^q x \). Then \(\mathcal{F} \geq \mathcal{V}_q(x) = I_p(\mathcal{V}_q(x)) \). Thus, \((X, q)\) is \(p \)-topological, since \(\mathcal{V}_q(x) \rightarrow^q x \). \qed

Theorem 3.4. If \((X, q)\) is a pretopological and \(p \)-topological, then \(q \leq \pi^\alpha p \).
Proof. Since \((X, q)\) is a pretopological and \(p\)-topological, \(\mathcal{V}_q(x) = I_p(\mathcal{V}_q(x))\).

Claim: \(\mathcal{V}_q(x) \leq \mathcal{V}_p^\omega(x)\). Let \(V \in \mathcal{V}_q(x)\). Then \(I_p(V) \in I_p(\mathcal{V}_q(x)) = \mathcal{V}_q(x)\). By Induction, \(I_p^n(V) \in \mathcal{V}_q(x)\) for all \(n \in N\), so \(x \in I_p^n(V)\) for all \(n \in N\). Thus \(x \in \cap_{n<\omega} I_p^n(V) = I_p^\omega(V)\), and hence \(V \in \mathcal{V}_p^\omega(x)\). Thus the Claim is proved.
From \(\mathcal{V}_p^\omega(x) = \mathcal{V}_{\pi^\omega p}(x)\), we obtain \(q \leq \pi^\omega p\). □

Proposition 3.5. ([5]). Let \(p\) and \(q\) be topological. Then \((X, q)\) is \(p\)-topological iff \(q \leq p\).

Proof. Since \(q\) is topological, \(\mathcal{V}_q(x)\) has a filter base of \(q\)-open sets.

(\(\implies\)) Since \((X, q)\) is \(p\)-topological and topological, by Theorem 3.4, \(q \leq \pi^\omega p = p\).

(\(\impliedby\)) Let \(q \leq p\). Then \(I_q(A) \subseteq I_p(A) \subseteq A\). This implies that each \(q\)-open set is \(p\)-open, so \(I_p(\mathcal{V}_q(x)) = \mathcal{V}_q(x)\), by Proposition 3.3. \((X, q)\) is \(p\)-topological. □

Proposition 3.6. ([5]). If \((X, q)\) is \(p\)-topological and \(p < p'\), then \((X, q)\) is \(p'\)-topological.

Proof. It follows from \(p < p'\) implies \(I_p(\mathcal{G}) \supseteq I_{p'}(\mathcal{G})\). □

Note that for \(q \in C(X)\), \(\tau_q = \{A \subseteq X : I_q(A) = A\}\) is a topology on \(X\) and \(\tau_q\) is the convergence structure defined by

\[
\tau_q(F) \xrightarrow{q} x \iff \mathcal{V}_{\tau_q}(x) \leq F, \text{ for each } F \in F(X),
\]

where \(\mathcal{V}_{\tau_q}(x)\) is the \(\tau_q\)-neighborhood filter at \(x \in X\). Then \(\tau_q\) is the finest topological convergence structure on \(X\) coarser than \(q\).([5]).

Now, we obtain the following theorem, which is different from Corollary 2.4 of [6].

Theorem 3.7. If \((X, q)\) is \(p\)-topological, then:

(1) \((X, \pi q)\) is \(p\)-topological and \(\tau_q \leq \pi q \leq \pi^\omega p\).

(2) \((X, \tau_q)\) is \(p\)-topological.
Proof. (1) Let \(\mathcal{F} \xrightarrow{q} x \); then there exists a \(\mathcal{G} \xrightarrow{q} x \) such that \(\mathcal{F} \supseteq I_p(\mathcal{G}) \supseteq I_p(V_q(x)) \). This holds for every \(\mathcal{F} \xrightarrow{q} x \), so

\[
V_{\pi q}(x) = V_q(x) = \bigcap \{ \mathcal{F} \in F(X) : \mathcal{F} \xrightarrow{q} x \} \supseteq I_p(V_q(x)) = I_p(V_{\pi q}(x)).
\]

Thus \((X, \pi q)\) is \(p \)-topological, so the first part is proved.

It is clear that \(\tau q \leq \pi q \). Since \((X, \pi q)\) is \(p \)-topological and pre-topological, by Theorem 3.4, \(\pi q \leq \pi^\omega p \).

(2) Since \((X, \tau q)\) is \(\tau q \)-topological and \(\pi q \leq \pi^\omega p \leq p \), by Proposition 3.6, \((X, \tau q)\) is \(p \)-topological. \(\square \)

Definition 3.8 For \(q, p \in C(X) \), \(\tau_p q \) is defined by:

\[
\mathcal{F} \xrightarrow{\tau_p q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq V^n_p(\mathcal{G}).
\]

Proposition 3.9. For \(q, p \in C(X) \), \((X, \tau_p q)\) is \(p \)-topological.

Proof. Let \(\mathcal{F} \xrightarrow{\tau_p q} x \). Then there exists \(\mathcal{G} \xrightarrow{q} x \) and \(n \in N \) such that \(\mathcal{F} \geq V^n_p(\mathcal{G}) \), so \(V_p(\mathcal{F}) \supseteq V_p(V^n_p(\mathcal{G})) = V^{n+1}_p(\mathcal{G}), \) [5]. Thus \(V_p(\mathcal{F}) \xrightarrow{\tau_p q} x \). This means \((X, \tau_p q)\) is \(p \)-topological. \(\square \)

4. Relations between Decomposition Series and Topological Series of Convergence Spaces

In this section, we will remind "topological series" defined by [5] and show relations between decomposition series and supratopological series, the formlar \(\pi^\beta(\tau_\alpha q) = \pi^{\omega \alpha \beta} q \), where \(\omega \) is the first limit ordinal and \(\alpha \) and \(\beta (\geq 1) \) are ordinals.

Let \(q \in C(X) \) and \(\alpha \geq 0 \) ordinal number. The topological series for \(q \) is the descending ordinal sequence \(\{ \tau_\alpha q \} \) defined recursively on \(X \) as follows:

\[
\begin{align*}
\tau_0 q &= q \\
\tau_1 q & : \mathcal{F} \xrightarrow{\tau_1 q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq V^n_q(\mathcal{G})
\end{align*}
\]
\[\tau_2 q : \mathcal{F} \overset{\tau_2 q}{\longrightarrow} x \iff \exists G \overset{q}{\rightarrow} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq V^n_{\tau_2 q}(G). \]

\[\tau_3 q : \mathcal{F} \overset{\tau_3 q}{\longrightarrow} x \iff \exists G \overset{q}{\rightarrow} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq V^n_{\tau_3 q}(G). \]

\[\tau_{\alpha q} : \mathcal{F} \overset{\tau_{\alpha q}}{\longrightarrow} x \iff \exists G \overset{q}{\rightarrow} x, \text{ } n \in N \text{ and } \beta < \alpha \text{ such that } \mathcal{F} \geq V^n_{\tau_{\alpha q}}(G), \]

where we know that \(\tau_1 q = \tau_2 q, \tau_2 q = \tau_{\tau_1 q} q = \tau_{\tau_2 q} q, \ldots, \text{ etc.} \)

Also, we know that if there exists \(\alpha' \) such that \(\alpha = \alpha' + 1 \), then

\[\mathcal{F} \overset{\tau_{\alpha q}}{\longrightarrow} x \iff \exists G \overset{q}{\rightarrow} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq V^n_{\tau_{\alpha q}}(G), \]

PROPOSITION 4.1. ([5]). For \(q \in C(X) \), there exists \(\tilde{q} \) which is the finest \(q \)-topological convergence structure on \(X \), and \(\mathcal{F} \overset{\tilde{q}}{\longrightarrow} x \) iff \(\mathcal{F} \geq V^n_{\tilde{q}}(x) \) for some \(n \in N \).

LEMMA 4.2. If \(G \overset{q}{\rightarrow} x \), then \(V_{\tilde{q}}^{n+1}(x) \leq V^n_{\tilde{q}}(G) \).

Proof. \(A \in V_{\tilde{q}}^{n+1}(x) \implies x \in I_{\tilde{q}}^{n+1}(A) \implies x \in I_q(I_{\tilde{q}}^{n}(A)) \implies I_{\tilde{q}}^{n}(A) \in V_q(x) \implies I_q^n(A) \in G \), since \(G \overset{q}{\rightarrow} x \implies G \geq V_q(x) \). Thus \(A \in V^n_{\tilde{q}}(G) \). \(\square \)

PROPOSITION 4.3. \(\tilde{q} = \tau_1 q \).

Proof. We have already known \(\tilde{q} \geq \tau_1 q \), so it remain to show \(\tau_1 q \geq \tilde{q} \).

Let \(\mathcal{F} \overset{\tau_1 q}{\rightarrow} x \). Then there exists \(G \overset{q}{\rightarrow} x \) and \(n \in N \) such that \(\mathcal{F} \geq V^n_{\tilde{q}}(G) \).

By the above Lemma, \(\mathcal{F} \geq V^n_{\tilde{q}}(G) \geq V_{\tilde{q}}^{n+1}(x) \), so \(\mathcal{F} \overset{\tilde{q}}{\rightarrow} x \). \(\square \)

PROPOSITION 4.4. (1) \(q \geq \pi^n q \geq \tilde{q} \geq \pi^n q \). (2) \(\pi(\tau_1 q) = \pi^n q \).

Proof. (1) It is clear that \(q \geq \pi^n q \). Let \(n \in N \) and \(\mathcal{F} \in F(X) \).

Then \(\mathcal{F} \overset{\pi^n q}{\rightarrow} x \iff \mathcal{F} \geq V^n_{\pi q}(x) \implies \mathcal{F} \overset{\tilde{q}}{\rightarrow} x, \text{ since } x \overset{q}{\rightarrow} x \).

Thus, \(\pi^n q \geq \tilde{q} \) for each \(n \in N \).
Decomposition Series and Topological Series

Also, \(\mathcal{F} \xrightarrow{\tilde{q}} x \iff \exists n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}^n_q(x) \geq \cap_n \omega \mathcal{V}^n_q(x) = \mathcal{V}^n_q(x) \), where \(\mathcal{V}^n_q(x) = \mathcal{V}^n_{\pi^\omega q}(x) \iff \mathcal{F} \xrightarrow{\pi^\omega q} x \).

(2) Since \(\tilde{q} = \tau_1 q \), by (1) \(\pi(\tau_1 q) \geq \pi(\pi^\omega q) = \pi^\omega q \). While, by Theorem 3.7, \(\pi(\tau_1 q) \leq \pi^\omega q \), since \(\tau_1 q \) is a \(q \)-topological. Thus, \(\pi(\tau_1 q) = \pi^\omega q \).

We know that for \(q \in C(X) \), the first term in the topological series for \(q \) is \(\tau_1 q = \tilde{q} \). \(\tau_1 q \) is the finest topological convergence structure on \(X \) and also the lower \(q \)-topological modification of \(q \), since \(\tau_1 q = \tilde{q} \leq \pi^\omega q \leq q \). Note that \(q \) has no upper \(q \)-topological modification unless \(q \) is a topology. We next show that that \(\tau_2 q \) is related to \(\tau_1 q \) exactly as \(\tau_1 q \) is related to \(q \). Note that the lower \(\tau_1 q \)-topological modification of \(\tau_1 q \) is \(\tau_1 \tilde{q} \) defined by:

\[
\mathcal{F} \xrightarrow{\tau_1 \tilde{q}} x \iff \exists \mathcal{G} \xrightarrow{\tau_1 q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}^n_{\tau_1 q}(\mathcal{G}).
\]

Proposition 4.5. For any \(q \in C(X) \), \(\tau_2 q = \tau_1 \tilde{q} \).

Proof. \(\mathcal{F} \xrightarrow{\tau_2 q} x \iff \exists \mathcal{G} \xrightarrow{\tau_1 q} x \) and \(n \in N \) such that \(\mathcal{F} \geq \mathcal{V}^n_{\tau_1 q}(\mathcal{G}) \). But \(\mathcal{G} \xrightarrow{\tau_1 q} x \) since \(\tau_2 q \leq q \). Thus \(\mathcal{F} \xrightarrow{\tau_1 \tilde{q}} x \).

Conversely, \(\mathcal{F} \xrightarrow{\tau_1 \tilde{q}} x \iff \exists \mathcal{G} \xrightarrow{\tau_1 q} x \) and \(n \in N \) such that \(\mathcal{F} \geq \mathcal{V}^n_{\tau_1 q}(\mathcal{G}) \). Also, \(\mathcal{G} \xrightarrow{\tau_1 q} x \iff \exists \mathcal{H} \xrightarrow{\pi^\omega q} x \) and \(m \in N \) such that \(\mathcal{G} \geq \mathcal{V}^m_q(\mathcal{H}) \). Thus \(\mathcal{F} \geq \mathcal{V}^m_{\tau_1 q}(\mathcal{V}^m_q(\mathcal{H})) \geq \mathcal{V}^m_{\tau_1 q}(\mathcal{V}^m_{\tau_1 q}(\mathcal{H})) = \mathcal{V}^{m+m}_{\tau_1 q}(\mathcal{H}) \). Thus \(\mathcal{F} \xrightarrow{\tau_2 q} x \). \(\square \)

Proposition 4.6. \(\pi(\tau_1 q) = \pi^\omega q \) and \(\pi(\tau_2 q) = \pi^\omega(\tau_1 q) \).

Proof. The first equality follows from the Proposition 4.4. The second equality follows from \(\pi(\tau_2 q) = \pi(\tau_1 \tilde{q}) = \pi^\omega(\tau_1 q) \). \(\square \)

Proposition 4.7. If \(\alpha \) is a limit ordinal, \(\mathcal{V}^\alpha_q(x) = \cap_{\beta < \alpha} \mathcal{V}^\beta_q(x) \).
Proof. \(A \in \mathbb{Y}_q^\alpha(x) \iff x \in I^\alpha_q(A) = \cap_{\beta < \alpha} I^\beta_q(A) \iff x \in I^\beta_q(A), \forall \beta < \alpha \iff A \in \mathbb{Y}_q^\beta(x), \forall \beta < \alpha \iff A \in \cap_{\beta < \alpha} \mathbb{Y}_q^\beta(x). \) □

Proposition 4.8. \(\mathbb{V}_{\tau_nq}(x) = \mathbb{V}_q^{\omega_n}(x) \) and \(\mathbb{V}_{\tau_{\omega}q}(x) = \mathbb{V}_q^{\omega}(x) \) for all \(x \in X. \)

Proof. As we showed in Proposition 4.6, \(\pi(\tau_2 q) = \pi^\omega(\tau_1 q). \) Thus for any \(x \in X, \mathbb{V}_{\tau_2q}(x) = \mathbb{V}_q^{\omega}(x). \) Also, by Proposition 4.4, \(\mathbb{V}_{\tau_1q}(x) = \mathbb{V}_q^\omega(x). \) By Corollary 2.5, \(\mathbb{V}_{\tau_3q}^2(x) = \mathbb{V}_{\tau_1q}(\mathbb{V}_{\tau_1q}(x)) = \mathbb{V}_q^\omega(\mathbb{V}_q^\omega(x)) = \mathbb{V}_q^{\omega+\omega}(x) = \mathbb{V}_q^{\omega^2}(x). \) Similarly, \(\mathbb{V}_{\tau_{\omega}q}^n(x) = \mathbb{V}_q^{\omega_n}(x) \). Thus \(\mathbb{V}_{\tau_{\omega}q}^n(x) = \cap_{\beta < \omega} \mathbb{V}_{\tau_1q}^\beta(x) = \mathbb{V}_q^{\omega^\omega}(x). \) Expanding the reasoning of Proposition 4.6, we have \(\mathbb{V}_{\tau_{\omega}q}(x) = \mathbb{V}_q^{\omega}(x), \) for all \(x \in X, \) since \(\pi(\tau_3 q) = \pi^\omega(\tau_2 q). \) \(\mathbb{V}_{\tau_{\omega}q}^2(x) = \mathbb{V}_{\tau_{\omega}q}(\mathbb{V}_{\tau_{\omega}q}(x)) = \mathbb{V}_q^\omega(\mathbb{V}_q^{\omega^2}(x)) = \mathbb{V}_q^{\omega^3}(x). \) Similarly, \(\mathbb{V}_{\tau_{\omega}q}^n(x) = \mathbb{V}_q^{\omega_n}(x), \) so \(\mathbb{V}_{\tau_{\omega}q}(x) = \mathbb{V}_{\tau_{\omega}q}(x) = \cap_{\beta < \omega} \mathbb{V}_{\tau_{\omega}q}^\beta(x) = \cap_{\beta < \omega} \mathbb{V}_q^{\omega_n}(x) = \mathbb{V}_q^{\omega^\omega}(x). \) Likewise, we obtain \(\mathbb{V}_{\tau_{\omega}q}^n(x) = \mathbb{V}_q^{\omega_n^\omega}(x). \) This implies that \(\mathbb{V}_{\tau_{\omega}q}(x) = \cap_{\beta < \omega} \mathbb{V}_q^{\omega^\omega_n}(x) = \mathbb{V}_q^{\omega^\omega}(x). \) □

For \(q \in C(X) \) and any ordinal \(\alpha, \) let \(\tau_\alpha q \) and \(\sigma_\alpha q \) be defined inductively by \(\tau_0 q = \sigma_0 q = q \) and:

\[
F \xrightarrow{\tau_\alpha q} x \iff \exists G \xrightarrow{n} x, n \in N \text{ and } \beta < \alpha \text{ such that } F \geq \mathbb{V}_{\beta q}^n(G),
\]

\[
F \xrightarrow{\sigma_\alpha q} x \iff \exists G \xrightarrow{\sigma_{\beta q}} x, n \in N \text{ and } \beta < \alpha \text{ such that } F \geq \mathbb{V}_{\sigma_{\beta q}}^n(G).
\]

Note that \(\tau_1 q = \sigma_1 q \) is the lower \(q \)-topological modification of \(q. \) If \(\alpha + 1 \) is any non-limit ordinal, \(\sigma_{\alpha + 1} q = \tau_1(\sigma_\alpha q); \) in other words, \(\sigma_{\alpha + 1} q \) is the lower \(\sigma_\alpha q \)-topological modification of \(\sigma_\alpha q. \) If \(\alpha \) is a limit ordinal, \(\sigma_\alpha q = \inf \{ \sigma_\beta q : \beta < \alpha \}. \) Our first goal is to prove \(\sigma_\beta q = \tau_\alpha q \) for every ordinal \(\alpha. \)

Proposition 4.9. For any ordinal \(\alpha, \) \(\tau_\alpha q \geq \sigma_\alpha q. \)
Proof. Assume that \(\tau_{\beta q} \geq \sigma_{\alpha q} \) for every ordinal \(\beta < \alpha \). Then
\[\mathcal{F} \xrightarrow{\tau_{\alpha q}} x \implies \exists G \xrightarrow{q} x \text{ and } \beta < \alpha \text{ such that } \mathcal{F} \geq \mathcal{V}_{\tau_{\beta q}}(G) \geq \mathcal{V}_{\sigma_{\beta q}}(G). \]
Also, since \(G \xrightarrow{q} x \), \(G \xrightarrow{\sigma_{\alpha q}} x \). Thus \(\mathcal{F} \xrightarrow{\sigma_{\alpha q}} x. \)

Proposition 4.10. For any ordinal \(\alpha \), \(\tau_{\alpha q} = \sigma_{\alpha q} \).

Proof. The result is known for \(\alpha = 1 \). Assume the equality holds for \(\beta < \alpha \). By Proposition 4.9, it remains to show that \(\mathcal{F} \xrightarrow{\sigma_{\alpha q}} x \implies \mathcal{F} \xrightarrow{\tau_{\alpha q}} x. \)

Case 1. \(\exists a' \) such that \(\alpha = \alpha' + 1 \). Let \(\mathcal{F} \xrightarrow{\sigma_{\alpha' q}} x \). Then there exists \(\mathcal{F} \xrightarrow{\sigma_{\alpha' q}} x \) and \(n \in \mathbb{N} \) such that \(\mathcal{F} \geq \mathcal{V}_{\sigma_{\alpha q}}(G) = \mathcal{V}_{\tau_{\alpha q}}(G) \). Also, by induction hypothesis, \(G \xrightarrow{\tau_{\alpha q}} x \), so there exists \(H \xrightarrow{q} x \), \(\beta < \alpha' \) and \(m \in \mathbb{N} \) such that \(G \geq \mathcal{V}_{\tau_{\beta q}}(H) \). Thus, \(\mathcal{F} \geq \mathcal{V}_{\tau_{\dot{\alpha} q}}(G) \geq \mathcal{V}_{\tau_{\dot{\alpha} q}}(\mathcal{V}_{\tau_{\beta q}}(H)) \geq \mathcal{V}_{\tau_{\dot{\alpha} q}}(\mathcal{V}_{\tau_{\beta q}}(H)) \geq \mathcal{V}_{\tau_{\dot{\alpha} q}}(H) \), and hence \(\mathcal{F} \xrightarrow{\tau_{\alpha q}} x. \)

Case 2. \(\alpha \) is a limit ordinal. Then by induction hypothesis, \(\tau_{\beta q} = \sigma_{\beta q} \) for \(\beta < \alpha \), so \(\sigma_{\alpha q} = \inf\{\sigma_{\beta q} : \beta < \alpha\} = \inf\{\tau_{\beta q} : \beta < \alpha\} = \tau_{\alpha q}. \)

Proposition 4.11. For any ordinal \(\alpha \), \(\tau_{\alpha q} = \tau_{\alpha+1 q}. \) Thus
\(\mathcal{V}_{\tau_{\alpha+1 q}}(x) = \mathcal{V}_{\tau_{\alpha q}}(x) \) for all \(x \in X. \)

Proof. The first assertion follows by Proposition 4.10 and the note preceding Proposition 4.9. The second follows Proposition 4.6, since \(\pi(\tau_{\beta p}) = \tau_{\pi(p)} \) holds for any convergence structure \(p \), letting \(p = \tau_{\alpha q}. \)

Proposition 4.12. For any ordinal \(\alpha \) and \(x \in X \), \(\mathcal{V}_{\tau_{\alpha q}}(x) = \mathcal{V}_{\tau_{\alpha q}}(x). \)

Proof. We will use induction on \(\alpha \). For \(\alpha = 1 \), the result follows by Proposition 4.11. Assume the equality holds for every \(\beta < \alpha \).

Case 1. Assume that there exists \(\alpha' \) such that \(\alpha = \alpha' + 1 \). Then by Proposition 4.11, \(\mathcal{V}_{\tau_{\alpha q}}(x) = \mathcal{V}_{\tau_{\alpha q}}(x), \) where by induction hypothesis,
\(\forall_{\alpha,q}(x) = \forall_{q}^{\omega^{\alpha}}(x) \). Thus \(\forall_{\alpha,q}^{2}(x) = \forall_{\alpha,q}(\forall_{\alpha,q}(x)) = \forall_{q}^{\omega^{\alpha+2}}(x) \), and similarly \(\forall_{\alpha,q}^{n}(x) = \forall_{q}^{\omega^{\alpha n}}(x) \). Thus \(\forall_{\alpha,q}(x) = \forall_{\alpha,q}(x) = \cap_{n<\omega} \forall_{\alpha,q}^{n}(x) = \forall_{\alpha,q}(x) = \forall_{q}^{\omega^{\alpha n}}(x) = \forall_{q}^{\omega^{\alpha+1}}(x) = \forall_{q}^{\omega^{\alpha}}(x) \).

Case 2. Assume that \(\alpha \) is a limit ordinal. By induction hypothesis, \(\forall_{\alpha,q}(x) = \forall_{q}^{\omega^{\beta}}(x) \) for \(\beta < \alpha \). Thus \(\forall_{\alpha,q}(x) = \cap_{\beta < \alpha} \forall_{q}^{\omega^{\beta}}(x) = \forall_{q}^{\omega^{\alpha}}(x). \)

Consequently, our last result is the following Theorems.

Theorem 4.13. For every ordinal \(\alpha \) and \(\beta \geq 1 \) and every \(x \in X \),
\[
\begin{align*}
(1) & \quad \forall_{\alpha,q}^{\beta}(x) = \forall_{q}^{\omega^{\alpha+\beta}}(x), \\
(2) & \quad \pi^{\beta} = \pi^{\omega^{\alpha}}(x).
\end{align*}
\]

Proof. (1) We will use induction on \(\beta \). For \(\beta = 1 \), the result follows by Proposition 4.12. Assume the equality holds for every \(\gamma < \beta \).

Case 1. \(\exists \beta' \) such that \(\beta = \beta'+1 \). then by Corollary 2.5, \(\forall_{\alpha,q}^{\beta'}(x) = \forall_{\alpha,q}^{\beta'+1}(x) = \forall_{\alpha,q}^{\beta'}(\forall_{\alpha,q}(x)) = \forall_{q}^{\omega^{\alpha+\beta'}}(\forall_{q}^{\omega^{\alpha}}(x)) = \forall_{q}^{\omega^{\alpha+1}}(x) = \forall_{q}^{\omega^{\alpha}}(x). \)

Case 2. \(\beta \) is a limit ordinal. By induction hypothesis, \(\forall_{\alpha,q}^{\beta}(x) = \forall_{q}^{\omega^{\alpha}}(x) \) for \(\gamma < \beta \). Thus \(\forall_{\alpha,q}^{\beta}(x) = \cap_{\gamma < \beta} \forall_{\alpha,q}^{\gamma}(x) = \forall_{q}^{\omega^{\alpha}}(x). \)

(2) By (1), it is clear.

Finally, we define the lengths of decomposition series and topological series of \(q \in C(X) \), \(l_{D}q \), and \(l_{T}q \), respectively by:
\[
\begin{align*}
l_{D}q = & \inf\{ \lambda : \lambda \text{ is an ordinal such that } \pi^{\lambda} = \pi^{\lambda+1}q \}, \\
l_{T}q = & \inf\{ \lambda : \lambda \text{ is an ordinal such that } \tau^{\lambda} = \tau^{\lambda+1}q \}.
\end{align*}
\]

We know that \(l_{D}q = \inf\{ \lambda : \lambda \text{ is an ordinal s.t. } I_{q}^{\lambda}(A) = I_{q}^{\lambda+1}(A), \forall A \subseteq X \} = \inf\{ \lambda : \lambda \text{ is an ordinal such that } \pi^{\lambda} = \tau^{q} \} \).

Proposition 4.14. For \(q \in C(X) \) and an ordinal \(\alpha \),
\[
\begin{align*}
(1) & \quad \text{if } l_{T}q \leq \alpha, \text{ then } \tau_{\alpha}q = \tau^{q} \\
(2) & \quad \text{if } l_{T}q \leq \alpha, \text{ then } l_{D}q \leq \omega^{\alpha}.
\end{align*}
\]
Proof. (1) Let \(\lambda = l_T q \). Then \(\tau_\lambda q = \tau_{\lambda+1} q = \tau q \). Since \(\lambda \leq \alpha \), \(\tau_\lambda q \geq \tau_\alpha q \geq \tau q \). Thus \(\tau_\alpha q = \tau q \).

(2) Since \(l_T q \leq \alpha \), \(\tau_\alpha q = \tau q \). Thus \(\pi(\tau_\alpha q) = \pi(\tau q) \), so \(\pi^{\omega^\alpha} q = \tau q \).

Finally, \(l_D q \leq \omega^\alpha \). □

References

Department of Mathematics,
College of Natural Science,
Geongsang National University
Jinju 660-701 Korea
E-mail: sanghop@nongae.gsnu.ac.kr