East Asian Math. J. 22 (2006), No. 2, pp. 151–162

COINCIDENCE POINT THEOREMS FOR SINGLE AND MULTI-VALUED CONTRACTIONS

T. VEERAPANDI, T. TAMIZH CHELVAM^{*} AND M. MARIAPPAN

ABSTRACT. In this paper two coincidence point theorems in complete metric spaces for two pairs of single and multi-valued mappings have been established.

1. Introduction

Let (X, d) be a metric space and let f and g be mappings from X into itself. In [5], Sessa defined f and g to be weakly commuting if $d(gfx, fgx) \leq d(gx, fx)$ for all $x \in X$. It can be seen that two commuting mappings are weakly commuting, but the converse is false as shown in the example of [5]. Recently Jungck [1] extended the concept of weak commutativity in the following way.

Let f and g be mappings from a metric space (X, d) into itself. The mappings f and g are said to be **compatible** if $\lim_{n\to\infty} d(fgx_n, gfx_n) = 0$ whenever $\{X_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$ for some z in X. It is obvious that two weakly commuting mappings are compatible, but the converse is not true, as one can see from the examples in [1].

Recently Kaneko [2] and Singh et al. [6] extended the concepts of weak commutativity and compatibility for single valued mappings to the setting of single valued and multi-valued mappings, respectively. Now let (x, d) be a metric space and let CB(X) denote the family of all non-empty closed and bounded subsets of X. Let H be the

Received October 10, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 54H25.

Key words and phrases: coincidence point, multi-valued mapping, weakly Commuting mappings, compatible mappings.

Hausdorff metric on CB(X) and it is defined as

$$H(A,B) = \max\left\{\sup_{x \in A} d(x,B), \sup_{y \in B}, d(y,A)\right\} \text{ for } A, B \in CB(X),$$

Where $d(x, A) = \inf_{y \in A} d(X, y)$. It is well known that (CB(X), H) is a metric space. Further if (X, d) is complete, then (CB(X), H) is also complete.

The following lemma has been proved in Nadler [4].

LEMMA 1.1. Let $A, B \in CB(X)$ and k > 1. Then for each $a \in A$ there exists a point $b \in B$ such that $d(a,b) \leq kH(A,B)$.

DEFINITION 1.2. Let (X, d) be a metric space and let $f : X \to X$ and $S : X \to CB(X)$ be single valued and multi-valued mappings respectively. The mappings f and S are said to be weakly commuting if for all $x \in X, fSx \in CB(X)$ and $H(Sfx, fSx) \leq d(fx, Sx)$, where H is the Hausdorff metric defined on CB(X).

DEFINITION 1.3. The mappings f and S are said to compatible if

$$\lim_{n \to \infty} d(fy_n, Sfx_n) = 0$$

whenever $\{x_n\}$ and $\{y_n\}$ are sequence in X such that

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} y_n = z \quad \text{for some } z \in X,$$

where $y_n \in Sx_n$ for $n = 1, 2, \ldots$.

Remark 1.4.

- (i) Definition 1.3 is slightly different from Kaneko's [2] definition.
- (ii) If S is a single valued mapping on X in Definitions 1.2 and 1.3, then Definitions 1.2 and 1.3 become the definitions of weak commutativity and compatibility for single valued mapping.
- (iii) If the mappings f and S are weakly commuting, then they are compatible, but the converse is not true. In fact, suppose that f and S are weakly commuting and let $\{X_n\}$ and $\{y_n\}$ be two sequences in X such that $y_n \in SX_n$ for n = 1, 2, ... and

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} y_n = z \quad \text{for some } z \in X.$$

From $d(fx_n, Sx_n) \leq d(fx_n, y_n)$, it follows that

$$\lim_{n \to \infty} d(fx_n, Sx_n) = 0.$$

Thus,
$$f$$
 and S are weakly commuting, we have

$$\lim_{n \to \infty} H(Sfy_n, fSx_n) = 0.$$
On the other hand, since $d(fy_n, Sfx_n) \le H(fSx_n, Sfx_n)$, we have

$$\lim_{n \to \infty} d(fy_n, Sfx_n) = 0,$$

which means that f and S are compatible.

EXAMPLE 1.5. Let $X = [1, \infty)$ be set with the Euclidean metric d and define $fx = 2x^4 - 1$ and $Sx = [1, x^2]$ for all $X \ge 1$. Note that f and S are continuous and S(X) = f(X) = X. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X defined by

$$x_n = y_n = 1$$
 for $n = 1, 2, \dots$

Then we have

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} y_n = 1 \in X,$$

where $y_n \in Sx_n$. On the other hand, we can show that $H(fSx_n, Sfx_n) = 2(xn^4 - 1)^2 \to 0$ if and only if $x_n \to 1$ as $n \to \infty$ and so, since $d(fy_n, Sfx_n) \leq H(fSx_n, Sfx_n)$, we have

$$\lim_{n \to \infty} d(fy_n, Sfx_n) = 0.$$

Therefore f and S are compatible, but f and S are not weakly commuting at x = 2.

2. Main Results

In this section we prove two coincidence point theorems and some particular cases of the same as corollaries.

THEOREM 2.1. Let (X, d) be a complete metric space. Let f, $g: X \to X$ be a continuous mappings and $S, T: X \to CB(X)$ be H continuous mappings. Suppose $T(X) \subseteq f(X), S(X) \subseteq g(X)$, the pair S and g are compatible mappings and

(1)
$$H(Sfx, Tgy) \leq h \max\{d(fx, Sfx), d(gy, Tgy), \\ d(gy, Sfx), d(fx, Tgy), d(fx, gy)\}$$

for all $x, y \in X$ and 0 < h < 1. Then S, f and T, g have a unique coincidence point.

154 – T. Veerapandi, T. Tamizh Chelvam* and M. Mariappan

Proof. Let $x_0 \in X$ be any arbitrary element in X. Since $S(X) \subseteq g(X)$ we have $Sfx_0 \subseteq g(X)$. This implies that there exists and element $x_1 \in X$ such that $gx_1 \in Sfx_0$. Since $T(X) \subseteq f(X)$ we have $Tgx_1 \subseteq f(X)$. Thus there exists $x_2 \in X$ such that $fx_2 \in Tgx_1$ and

$$d(gx_1, fx_2) \leq \frac{1}{p} H(Sfx_0, Tgx_1) \quad \text{where } P = \sqrt{2h} < 1.$$

Similarly, there exists $x_3 \in X$ such that $gx_3 \in Sfx_2$ and

$$d(gx_3, fx_2) \leq \frac{1}{p}H(Sfx_2, Tgx_1).$$

Now using (1), we have

$$H(Sfx_0, Tgx_1) \le h \max\{d(fx_0, Sfx_0), d(gx_1, Tgx_1), d(gx_1, Sfx_0), d(fx_0, Tgx_1), d(fx_0, gx_1)\}$$

and so

$$\begin{split} \frac{1}{p}H(S\!f\!x_0, Tgx_1) &\leq \frac{h}{p} \max\{d(f\!x_0, gx_1), d(gx_1, fx_2), d(gx_1, gx_1), \\ &\quad d(f\!x_0, fx_2), d(f\!x_0, gx_1)\} \\ d(gx_1, fx_2) &\leq \frac{h}{p} \max\{d(f\!x_0, gx_1), d(gx_1, fx_2), d(f\!x_0, fx_2)\} \\ &\leq \frac{h}{p} \max(d(f\!x_0, gx_1), d(gx_1, fx_2), d(f\!x_0, gx_1), + d(gx_1, fx_2)\} \\ d(gx_1, fx_2) &\leq \frac{h}{p} [d(f\!x_0, gx_1) + d(gx_1, fx_2)] \\ (P-h) \ d(gx_1, fx_2) &\leq h \ d(f\!x_0, gx_1) \end{split}$$

This implies that

(2)
$$d(gx_1, fx_2) \le \frac{h}{P-h} d(fx_0, gx_1)$$
$$= \sqrt{r} d(fx_0, gx_1) \text{ where } 0 < \sqrt{r} = \frac{h}{P-h} < 1.$$

Also

$$\begin{split} d(gx_3, fx_2) &\leq \frac{1}{P} H(Sfx_2, Tgx_1) \\ &\leq \frac{1}{P} h \max\{d(fx_2, Sfx_2), d(gx_1, Tgx_1), d(gx_1, Sfx_2), \\ &\quad d(fx_2, Tgx_1), d(fx_2, gx_1)\} \\ &\leq \frac{1}{P} h \max\{d(fx_2, gx_3), d(gx_1, fx_2), d(gx_1, gx_3), \\ &\quad d(fx_2, fx_2), d(fx_2, gx_1)\} \\ &\leq \frac{1}{P} h \max\{d(fx_2, gx_3), d(gx_1, fx_2), d(gx_1, fx_2) + d(fx_2, fx_3)\} \end{split}$$

and hence

$$\begin{aligned} d(gx_3, fx_2) &\leq \frac{1}{P} h\{d(fx_2, gx_3) + d(gx_1, fx_2)\}(P - h)d(gx_3, fx_2) \\ &\leq hd(gx_1, fx_2) \\ d(gx_3, fx_2) &\leq \frac{h}{P - h} d(gx_1, fx_2) \\ d(gx_3, fx_2) &\leq \sqrt{r} d(gx_1, fx_2) \\ &\leq \sqrt{r} \sqrt{r} d(fx_0, gx_1) \quad (\text{using } 2.2) \\ d(gx_3, fx_2) &\leq rd(fx_0, gx_1) \end{aligned}$$

Continuing in this way, we get a sequence $\{x_n\}$ in X such that $gx_{2n+1} \in Sfx_{2n}$ and $fx_{2n} \in Tgx_{2n+1}$ for all $n \ge 1$ and so

$$d(gx_{2n+1}, fx_{2n}) \le r^n d(fx_0, gx_1) \text{ for } n \ge 1.$$

and

$$d(gx_{2n+1}, fx_{2n+2}) \le r^{n+1/2} d(fx_0, gx_1) \text{ for } n \ge 0.$$

Thus $\{gx_1, fx_2, gx_3, fx_4, \ldots, fx_{2n}, gx_{2n+1}\}$ is a Cauchy sequence, since X is complete there is a point $z \in X$ such that

$$\lim_{n \to \infty} g x_{2n+1} = \lim_{n \to \infty} f x_{2n} = z.$$

Now, we will prove that Z is a coincidence point of f and S. For every $n \ge 0$, we have

(3)
$$d(fgx_{2n+1}, Sz) \le d(fgx_{2n+1}, Sfx_{2n}) + H(Sfx_{2n}, Sz)$$

155

It follows from H-continuity of S and $fx_{2n} \to z$ as $n \to \infty$ that

(4)
$$\lim_{n \to \infty} H(Sfx_{2n}, Sz) = 0$$

Since f and S are compatible mappings and

$$\lim_{n \to \infty} f x_{2n} = \lim_{n \to \infty} g x_{2n+1} = z.$$

and $gx_{2n+1} \in Sfx_{2n}$ we have

(5)
$$\lim_{n \to \infty} d(fgx_{2n+1}, Sfx_{2n}) = 0$$

Thus from (3), (4) and (5) we get

$$\lim_{n \to \infty} (fgx_{2n+1}, Sz) = 0$$

and so $d(fz, Sz) \le d(fz, fgx_{2n+1}) + d(fgx_{2n+1}, Sz)$.

Letting *n* tends to infinity, it follows that d(fx, Sz) = 0 this implies that $fz \in Sz$ since Sz is closed subset of X and thus z is a coincidence point of f and S. Similarly, we can prove that z is a coincidence point of g and T.

To prove the uniqueness of the coincidence point, let $z \neq y$ be another coincidence point for the pairs f, S and of g, T. Then f(z) = g(z) = z and f(y) = g(y) = y. Also $f(z) \in S(z)$ and $g(z) \in T(z), f(y) \in S(y)$ and $g(y) \in T(y)$.

Now, we have

$$\begin{array}{ll} H(Sfz, Tgy) &\leq & h \max\{d(fz, Sfz), \\ & & d(gy, Tgy), d(gy, Sfz), d(fz, Tgy), d(fz, gy)\} \end{array}$$

and so

$$H(Sz, Ty) \le h \max\{d(z, z), d(y, y), d(y, z), d(z, y), d(z, y)\}.$$

Hence

$$d(y,z) \le H(z,y) \le hd(y,z) < d(y,z),$$

which is a contradiction.

This completes the proof of the theorem.

Letting f = g as the identity mapping on X, in the above Theorem 2.1, we have the following corollary, which contains the result of Bose and Mukherjee [7]. COROLLARY 2.2. Let (X, d) be a complete metric space and let $S, T : X \to CB(X)$ be H-continuous multi-valued mappings such that

 $H(Sz, Ty) \le h \max\{d(x, Sx), d(y, y), d(y, Sx), d(x, Ty), d(x, y)\}.$

for all $x, y \in X$ and $0 \le h < 1$, then S and T have a unique common fixed point in X.

Putting f = g and S = T in Theorem 2.1, we have the following corollary.

COROLLARY 2.3. Let (X,d) be a complete metric space. Let $f: X \to X$ be a continuous mapping and let $S: X \to CB(X)$ be an *H*-continuous mapping such that $S(X) \subseteq f(X)$ and

 $\begin{array}{ll} H(Sfx,Sfy) &\leq & h \max\{d(fx,Sfx), \\ & & d(fy,Sfy), d(fy,Sfx), d(fx,Sfy), d(fx,fy)\} \end{array}$

for all $x, y \in X$ and $0 \leq h < 1$. Then f and S have a unique coincidence point.

Putting f = g = 1 and T = S in Theorem 2.1, we have the following corollary, which includes the result of Ciric [9].

COROLLARY 2.4. Let (X, d) be a complete metric space and let $X \to CB$ continuous mapping such that

 $H(Sx, Sy) \le h \max\{d(x, Sx), d(y, Sy), d(x, Sy), d(y, Sx), d(x, y)\}$

for all $x, y \in X$ and $0 \le h < 1$. Then S has a unique fixed point.

THEOREM 2.5. Let (X,d) be a complete metric space. Let $f,g: X \to X$ be continuous mappings and $S,T: X \to CB(X)$ be H-continuous mappings such that $T(X) \subseteq f(X)$ and $S(X) \subseteq g(X)$; the fair S and g are compatible mappings and

$$H^p(Sx, Ty)$$

$$\leq \max\{ad(fx, gy)d^{p-1}(fx, Sx), ad^{p-1}(gy, Ty)d(fx, gy), ad^{p-1}(gy, Ty)\}$$
(6)

$$d(fx, Sx), d(gy, Sx)[c_1d^{p-1}(fx, Ty) + c_2d^{p-1}(gy, Ty)]\}$$

for all $x, y \in X$, integer $p \ge 2, 0 < a < 1$ and $c_1, c_2 \ge 0$, then there exists a coincidence point z of f, S and g, T. Further. if $0 < c_1 < 1$, then z is unique.

Proof. Let x_0 be an arbitrary point in X. Since $Sx_0 \subseteq g(X)$, there exists a point $x_1 \in X$ such that $gx_1 \in Sx_0$ and so there exists a point $x_2 \in X$ such that $fx_2 \in Tx_1$.

Hence by Lemma 1.1, there is $k = a^{-1/2p} > 1$ with such that $d(gx_1, fx_2) \leq kH(Sx_0, Tx_1)$. Similarly, there exists a point $x_3 \in X$ and $gx_3 \in Sx_2$ such that $d(gx_3, fx_2) \leq kH(Sx_2, Tx_1)$. Again, there exists a point $x_4 \in X, fx_4 \in Tx_3$ such that $d(gx_3, fx_4) \leq kH(Sx_2, Tx_3)$. Inductively, we can obtain a sequence $\{x_n\}$ in X such that for all $n \geq 0, fx_{2n+2} \in Tx_{2n+1}$ and $gx_{2n+1} \in Sx_{2n}$ and $d(gx_{2n+1}, fx_{2n+2}) \leq kH(Sx_{2n}, Tx_{2n+1})$.

Hence

$$\begin{split} d^{p}(gx_{2n+1}, fx_{2n+2}) \\ &\leq k^{p} H^{p}(Sx_{2n}, Tx_{2n+1}) \\ &\leq k^{P} \max\{ad(fx_{2n}, gx_{2n+1})d^{p-1}(fx_{2n}, Sx_{2n}), ad^{P-1}(gx_{2n+1}, Tx_{2n+1}) \\ &d(fx_{2n}, gx_{2n+1}), ad^{P-1}(gx_{2n+1}, Tx_{2n+1})d(fx_{2n}, Sx_{2n}), \\ &d(gx_{2n+1}, Sx_{2n})[c_{1}d^{P-1}(fx_{2n}, Tx_{2n+1}) + c_{2}d^{P-1}(gx_{2n+1}, Tx_{2n+1})]\} \\ &\leq k^{P} \max\{ad(fx_{2n}, gx_{2n+1})d^{P-1}(fx_{2n}, gx_{2n+1})ad^{P-1}(gx_{2n+1}, fx_{2n+2}) \\ &d(fx_{2n}, gx_{2n+1}), ad^{P-1}(gx_{2n+1}, fx_{2n+2})d(fx_{2n}, gx_{2n+1},) (using 2.1) \\ &d(gx_{2n+1}, gx_{2n+1})[c_{1}d^{P-1}(fx_{2n}, fx_{2n+2}) + c_{2}d^{P-1}(gx_{2n+1}, fx_{2n+2})]\} \\ &\leq k^{P} a \max\{d^{P}(fx_{2n}, gx_{2n+1}), d^{P-1}(gx_{2n+1}, fx_{2n+2}) d(fx_{2n}, gx_{2n+1}) \\ &= a^{\frac{1}{2}} a \max\{d^{P}(fx_{2n}, gx_{2n+1}), d^{P-1}(gx_{2n+1}, fx_{2n+2}) d(fx_{2n}, gx_{2n+1})\} \\ d^{P}(gx_{2n+1}, fx_{2n+2}) \\ &\leq \sqrt{a} \max\{d^{P}(fx_{2n}, gx_{2n+1}), d^{P-1}(gx_{2n+1}, fx_{2n+2}) d(fx_{2n}, gx_{2n+1})\} \\ \text{If} \end{split}$$

$$\max\{d^{p}(fx_{2n}, gx_{2n+1}), d^{p-1}(gx_{2n+1}, fx_{2n+2})d(fx_{2n}, gx_{2n+1})\} = d^{p-1}(gx_{2n+1}, fx_{2n+2})d(fx_{2n}, gx_{2n+1})$$

then

$$d^{p}(fx_{2n}, gx_{2n+1}) \leq d^{p-1}(gx_{2n+1}, fx_{2n+2})d(fx_{2n}, gx_{2n+1})$$

and so

(7)
$$d(fx_{2n}, gx_{2n+1}) \le d(gx_{2n+1}, fx_{2n+2})$$

Also

$$d^{p}(gx_{2n+1}, fx_{2n+2}) \leq \sqrt{a} \, d^{p-1}(gx_{2n+1}, fx_{2n+2}) d(fx_{2n}, gx_{2n+1})$$
(8)
$$d(gx_{2n+1}, fx_{2n+2}) \leq \sqrt{a} \, d(fx_{2n}, gx_{2n+1}) < d(fx_{2n}, gx_{2n+1})$$

Hence from (7) and (8)

$$\max\{d^p(fx_{2n}, gx_{2n+1}), d^{p-1}(gx_{2n+1}, fx_{2n+2}), d(fx_{2n}, gx_{2n+1})\} = d^p(fx_{2n}, gx_{2n+1})$$

Thus

$$d^p(gx_{2n+1}, fx_{2n+2}) \le \sqrt{a} \, d^p(gx_{2n+1}, fx_{2n})$$

and hence

$$d(gx_{2n+1}, fx_{2n+2}) \le \beta d(gx_{2n+1}, fx_{2n}) \quad \text{for } n \ge 0.$$

where $\beta = a^{1/2p} < 1$. Also

$$\begin{aligned} d(gx_{2n+1}, fx_{2n+2}) &\leq \beta d(gx_{2n-1}, fx_{2n}) \quad \text{for } n \geq 1 \\ &\leq \beta^n d(gx_1, fx_2) \to 0 \quad \text{as } n \to \infty \text{ (since } 0 < \beta < 1). \end{aligned}$$

It follows that $\{gx_1, fx_2, gx_3, fx_3, fx_4, \dots, gx_{2n-1}, fx_{2n} \dots\}$ is a Cauchy sequence in X.

Since (X, d) is a complete metric space, there is a point z in X such that

$$\lim_{n \to \infty} gx_{2n+1} = \lim_{n \to \infty} fx_{2n} = z.$$

Now we will prove that z is a coincidence point of f and S. For every $n \ge 1$, we have

(9)
$$d(fgx_{2n+1}, Sz) \le d(fgx_{2n+1}, Sfx_{2n}) + H(sfx_{2n}, Sz)$$

It follows from H-continuity of S that

(10)
$$\lim_{n \to \infty} H(Sfx_{2n}, Sz) = 0$$

Since $fx_{2n} \to z$ as $n \to \infty$.

159

Since f and S are compatible mappings and

(11)
$$\lim_{n \to \infty} d(fgx_{2n+1}, Sfx_{2n}) = 0$$

Thus from the identities (9), (10) and (11) we have $\lim_{n\to\infty} d(fgx_{2n+1}, Sz) = 0$ and so $d(fz, Sz) \leq (fz, fgx_{2n+1}) + d(fgx_{2n+1}, Sz)$. Letting $n \to \infty$, it follows that d(fz, Sz) = 0. This implies that $fz \in Sz$, since Sz is a closed subset of X. Thus z is a coincidence point of f and S. Similarly, we prove that z is a coincidence point of g and T.

Suppose $z \neq y$ is an another coincidence point for the pair f, Sand g, T then fz = gz = z and fy = gy = y. This gives that $f(z) \in S(z), g(z) \in T(z)$ and $f(y) \in S(y), g(y) \in T(y)$ and so $d^{p}(z, y) \leq H^{p}(Sz, Ty)$

$$\leq \max\{ad(fz, gy)d^{p-1}(fz, Sz), ad^{p-1}(gy, Ty)d(fz, gy), ad^{p-1}(gy, Ty) \\ d(fz, Sz), d(gy, Sz)[c_1d^{p-1}(fz, Ty) + c_2d^{p-1}(gy, Ty)]\} \\ = \max\{ad(z, y).0, 0.d(z, y), a.0, d(y, z)\{c_1, d^{p-1}(z, y) + c_2x0\} \\ = c_1d(y, z)d^{p-1}(y, z) \\ < d^p(y, z) \quad (\text{since } c_1 < 1), \end{cases}$$

which is a contradiction.

Hence f, S and g, T have a unique coincidence point.

Allowing $c_1 = c$ and $c_2 = 0$ in Theorem 2.5, we have the following corollary.

COROLLARY 2.6 (Duran Turkoglu Orhan Ozer, and Brain Fisher [8]).

Let (X, d) be a complete metric space. Let $f, g: X \to X$ be continuous mappings and $S, T: X \to CB(X)$ be *H*-continuous mappings such that $T(X) \subseteq f(X)$ and $S(X) \subseteq g(X)$, the pair S and g are compatible mappings and

$$H^{p}(Sx, Ty) \leq \max\{ad(fx, gy)d^{p-1}(fx, Sy), ad(fx, gy)d^{p-1}(gy, Ty), \\ ad(fx, Sx)d^{p-1}(gy, Ty), cd^{p-1}(fx, Ty)d(gy, Sx)\}$$

for all $x, y \in X$, where $p \ge 2$ is an integer, 0 < a < 1 and $c \le 0$. Then there exists a point $z \in X$, such that $fx \in Sz$ and $gz \in Tz$, i.e., z is a coincidence point of f, S and of g, T. Further, z is unique when 0 < c < 1. Letting f = g as identity mapping on X, in Theorem 2.5, we have the following corollary.

COROLLARY 2.7. Let (X, d) be a complete metric space and let $S, T : X \to CB(X)$ be H-Continuous multi-valued mappings such that

$$H^{P}(Sx, Ty) \leq \max\{ad(x, y)d^{P-1}(x, Sx), ad^{p-1}(y, Ty)d(x, y), ad^{P-1}(y, Ty) \\ d(x, Sx), d(y, Sx)[c_{1}d^{P-1}(x, Ty) + c_{2}d^{p-1}(y, Ty)]\}$$

for all $x, y \in X$ where $p \ge 2$ is an integer 0 < a < 1, and $c_1 + c_2 \ge 0$.

Then S and T have a common fixed-point z in X. Also S and T have a unique common fixed point z in X when $0 < c_1 < 1$.

Putting f = g and S = T in Theorem 2.5, we have the following corollary.

COROLLARY 2.8. Let (X, d) be a complete metric space, let $f : X \to X$ be a continuous mapping and let $S : X \to CB(X)$ be an *H*-continuous mapping such that $S(X) \subseteq f(X)$ and

$$H^{P}(Sx, Sy) \leq \max\{ad(fx, fy)d^{P-1}(fx, Sx), ad^{p-1}(fy, Sy)d(fx, fy), \\ ad^{P-1}(fy, Sy)d(fx, Sx), d(fy, Sx)[c_{1}d^{P-1}(fx, Sy) + c_{2}d^{p-1}(fy, Sy)]\}$$

for all $x, y \in X$ where $p \ge 2$ is an integer, 0 < a < 1 and $c_1 + c_2 \ge 0$. Then there exists a coincidence point z of f and S.

ACKNOWLEDGEMENT

The authors are very thankful for Refree's for valuable sugestion for the improvement of the paper. This research work was partially supported by UGC of India through Xth plan FDP Programme to third author.

REFERENCES

- G. Jungck, Compatible mappings and common fixed points, Internet J. Math. Math. Sci. 9:771-773, 1986.
- [2] H. Kaneko, A common fixed point of weakly commuting multi valued mappings, Math. Japan 33:741-744, 1988.

162-T. Veerapandi, T. Tamizh Chelvam* and M. Mariappan

- [3] H. Kaneko H. and S. Sessa, Fixed point theorems for compatible multi-valued and single-valued mappings, Internet. J. Math. Math. Sci. 12:257-262, 1989.
- [4] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30:475-488, 1969.
- [5] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) 32:146-153, 1982.
- [6] S. L. Singh, K. S. Ha and Y. J. Cho, Coincidence and fixed points of non linear hybrid contractions, Internet. J. Math. Math. Sci. 12:247-256, 1979.
- [7] R. K. Bose and R. N. Mukherjee, Common fixed points of some multi-valued mapping, Tamukang Jour. Math. 8:245-249, 1977.
- [8] D. Turkoglu D, O. Ozer and B. A. Fisher, Coincidence point theorem for multi-valued contractions, Mathematical Communications 7:39-44, 2002.
- [9] L. B. Ciric, A generalization of Banach's Contraction principle, Proc. Amer. Math. Soc. 45:267-273, 1974, MR50 8484.

T. VEERAPANDI Department of Mathematics PMT College Melaneelithanallur Tamil Nadu, India. *E-mail*: vrpnd@yahoo.co.in

T. TAMIZH CHELVAM Department of Mathematics Manonmaniam Sundaranar University Tirunelveli 627 012 Tamil Nadu, India. *E-mail*: tamche_59@yahoo.co.in

M. MARIAPPAN Department of Mathematics PMT College Melaneelithanallur Tirunelveli , Tamil Nadu, India. *E-mail*: mmn@yahoo.com