COINCIDENCE POINT THEOREMS FOR SINGLE AND MULTI-VALUED CONTRACTIONS

T. Veerapandi, T. Tamizh Chelvam ${ }^{*}$ and M. Mariappan

Abstract

In this paper two coincidence point theorems in complete metric spaces for two pairs of single and multi-valued mappings have been established.

1. Introduction

Let (X, d) be a metric space and let f and g be mappings from X into itself. In [5], Sessa defined f and g to be weakly commuting if $d(g f x, f g x) \leq d(g x, f x)$ for all $x \in X$. It can be seen that two commuting mappings are weakly commuting, but the converse is false as shown in the example of [5]. Recently Jungck [1] extended the concept of weak commutativity in the following way.

Let f and g be mappings from a metric space (X, d) into itself. The mappings f and g are said to be compatible if $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=$ 0 whenever $\left\{X_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=$ z for some z in X. It is obvious that two weakly commuting mappings are compatible, but the converse is not true, as one can see from the examples in [1].

Recently Kaneko [2] and Singh et al. [6] extended the concepts of weak commutativity and compatibility for single valued mappings to the setting of single valued and multi valued mappings, respectively. Now let (x, d) be a metric space and let $C B(X)$ denote the family of all non-empty closed and bounded subsets of X. Let H be the

[^0]Hausdorff metric on $C B(X)$ and it is defined as

$$
H(A, B)=\max \left\{\sup _{x \equiv A} d(x, B), \sup _{y \equiv B}, d(y, A)\right\} \text { for } A, B \in C B(X)
$$

Where $d(x, A)=\inf _{y \in A} d(X, y)$. It is well known that $(C B(X), H)$ is a metric space. Further if (X, d) is complete, then $(C B(X), H)$ is also complete.

The following lemma has been proved in Nadler [4].
Lemma 1.1. Let $A, B \in C B(X)$ and $k>1$. Then for each $a \in A$ there exists a point $b \in B$ such that $d(a, b) \leq k H(A, B)$.

Definition 1.2. Let (X, d) be a metric space and let $f: X \rightarrow X$ and $S: X \rightarrow C B(X)$ be single valued and multi valued mappings respectively. The mappings f and S are said to be weakly commuting if for all $x \in X, f S x \in C B(X)$ and $H(S f x, f S x) \leq d(f x, S x)$, where H is the Hausdorff metric defined on $C B(X)$.

Definition 1.3. The mappings f and S are said to compatible if

$$
\lim _{n \rightarrow \infty} d\left(f y_{n}, S f x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequence in X such that

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} y_{n}=z \quad \text { for some } z \in X
$$

where $y_{n} \in S x_{n}$ for $n=1,2, \ldots$.
Remark 1.4.
(i) Definition 1.3 is slightly different from Kaneko's [2] definition.
(ii) If S is a single valued mapping on X in Definitions 1.2 and 1.3, then Definitions 1.2 and 1.3 become the definitions of weak commutativity and compatibility for single valued mapping.
(iii) If the mappings f and S are weakly commuting, then they are compatible, but the converse is not true. In fact,suppose that f and S are weakly commuting and let $\left\{X_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in X such that $y_{n} \in S X_{n}$ for $n=1,2, \ldots$ and

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} y_{n}=z \quad \text { for some } z \in X
$$

From $d\left(f x_{n}, S x_{n}\right) \leq d\left(f x_{n}, y_{n}\right)$, it follows that

$$
\lim _{n \rightarrow \infty} d\left(f x_{n}, S x_{n}\right)=0
$$

Thus, f and S are weakly commuting, we have

$$
\lim _{n \rightarrow \infty} H\left(S f y_{n}, f S x_{n}\right)=0 .
$$

On the other hand, since $d\left(f y_{n}, S f x_{n}\right) \leq H\left(f S x_{n}, S f x_{n}\right)$, we have

$$
\lim _{n \rightarrow \infty} d\left(f y_{n}, S f x_{n}\right)=0,
$$

which means that f and S are compatible.
Example 1.5. Let $X=[1, \infty)$ be set with the Euclidean metric d and define $f x=2 x^{4}-1$ and $S x=\left[1, x^{2}\right]$ for all $X \geq 1$. Note that f and S are continuous and $S(X)=f(X)=X$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X defined by

$$
x_{n}=y_{n}=1 \quad \text { for } n=1,2, \ldots
$$

Then we have

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} y_{n}=1 \in X,
$$

where $y_{n} \in S x_{n}$. On the other hand, we can show that $H\left(f S x_{n}, S f x_{n}\right)=$ $2\left(x n^{4}-1\right)^{2} \rightarrow 0$ if and only if $x_{n} \rightarrow 1$ as $n \rightarrow \infty$ and so, since $d\left(f y_{n}, S f x_{n}\right) \leq H\left(f S x_{n}, S f x_{n}\right)$, we have

$$
\lim _{n \rightarrow \infty} d\left(f y_{n}, S f x_{n}\right)=0 .
$$

Therefore f and S are compatible, but f and S are not weakly commuting at $x=2$.

2. Main Results

In this section we prove two coincidence point theorems and some particular cases of the same as corollaries.

Theorem 2.1. Let (X, d) be a complete metric space. Let f, $g: X \rightarrow X$ be a continuous mappings and $S, T: X \rightarrow C B(X)$ be H continuous mappings. Suppose $T(X) \subseteq f(X), S(X) \subseteq g(X)$, the pair S and g are compatible mappings and

$$
\begin{align*}
H(S f x, T g y) \leq & h \max \{d(f x, S f x), d(g y, T g y), \tag{1}\\
& d(g y, S f x), d(f x, T g y), d(f x, g y)\}
\end{align*}
$$

for all $x, y \in X$ and $0<h<1$. Then S, f and T, g have a unique coincidence point.

Proof. Let $x_{0} \in X$ be any arbitrary element in X. Since $S(X) \subseteq$ $g(X)$ we have $S f x_{0} \subseteq g(X)$. This implies that there exists and element $x_{1} \in X$ such that $g x_{1} \in S f x_{0}$. Since $T(X) \subseteq f(X)$ we have $T g x_{1} \subseteq f(X)$. Thus there exists $x_{2} \in X$ such that $f x_{2} \in T g x_{1}$ and

$$
d\left(g x_{1}, f x_{2}\right) \leq \frac{1}{p} H\left(S f x_{0}, T g x_{1}\right) \quad \text { where } P=\sqrt{2 h}<1 .
$$

Similarly, there exists $x_{3} \in X$ such that $g x_{3} \in S f x_{2}$ and

$$
d\left(g x_{3}, f x_{2}\right) \leq \frac{1}{p} H\left(S f x_{2}, T g x_{1}\right)
$$

Now using (1), we have

$$
\begin{gathered}
H\left(S f x_{0}, T g x_{1}\right) \leq h \max \left\{d\left(f x_{0}, S f x_{0}\right), d\left(g x_{1}, T g x_{1}\right), d\left(g x_{1}, S f x_{0}\right),\right. \\
\left.d\left(f x_{0}, T g x_{1}\right), d\left(f x_{0}, g x_{1}\right)\right\}
\end{gathered}
$$

and so

$$
\begin{aligned}
& \frac{1}{p} H\left(S f x_{0}, T g x_{1}\right) \leq \frac{h}{p} \max \left\{d\left(f x_{0}, g x_{1}\right), d\left(g x_{1}, f x_{2}\right), d\left(g x_{1}, g x_{1}\right),\right. \\
& d\left(g x_{1}, f x_{2}\right)\left.\leq \frac{h}{p} \max \left\{d\left(f x_{0}, f x_{2}\right), g x_{1}\right), d\left(f x_{0}, g x_{1}\right)\right\} \\
& \leq \frac{h}{p} \max \left(d\left(f x_{0}, f x_{2}\right), d\left(f x_{0}, f x_{2}\right)\right\} \\
&\left.d\left(g x_{1}, f x_{2}\right), d\left(f x_{0}, g x_{1}\right),+d\left(g x_{1}, f x_{2}\right)\right\} \\
& d\left(g x_{1}, f x_{2}\right) \leq \frac{h}{p}\left[d\left(f x_{0}, g x_{1}\right)+d\left(g x_{1}, f x_{2}\right)\right] \\
&(P-h) d\left(g x_{1}, f x_{2}\right) \leq h d\left(f x_{0}, g x_{1}\right)
\end{aligned}
$$

This implies that

$$
\begin{align*}
d\left(g x_{1}, f x_{2}\right) & \leq \frac{h}{P-h} d\left(f x_{0}, g x_{1}\right) \\
& =\sqrt{r} d\left(f x_{0}, g x_{1}\right) \quad \text { where } 0<\sqrt{r}=\frac{h}{P-h}<1 . \tag{2}
\end{align*}
$$

Also

$$
\begin{aligned}
d\left(g x_{3}, f x_{2}\right) \leq & \frac{1}{P} H\left(S f x_{2}, T g x_{1}\right) \\
\leq & \frac{1}{P} h \max \left\{d\left(f x_{2}, S f x_{2}\right), d\left(g x_{1}, T g x_{1}\right), d\left(g x_{1}, S f x_{2}\right)\right. \\
& \left.\quad d\left(f x_{2}, T g x_{1}\right), d\left(f x_{2}, g x_{1}\right)\right\} \\
\leq & \frac{1}{P} h \max \left\{d\left(f x_{2}, g x_{3}\right), d\left(g x_{1}, f x_{2}\right), d\left(g x_{1}, g x_{3}\right)\right. \\
& \left.d\left(f x_{2}, f x_{2}\right), d\left(f x_{2}, g x_{1}\right)\right\} \\
\leq & \frac{1}{P} h \max \left\{d\left(f x_{2}, g x_{3}\right), d\left(g x_{1}, f x_{2}\right), d\left(g x_{1}, f x_{2}\right)+d\left(f x_{2}, f x_{3}\right)\right\}
\end{aligned}
$$

and hence

$$
\begin{aligned}
d\left(g x_{3}, f x_{2}\right) & \leq \frac{1}{P} h\left\{d\left(f x_{2}, g x_{3}\right)+d\left(g x_{1}, f x_{2}\right)\right\}(P-h) d\left(g x_{3}, f x_{2}\right) \\
& \leq h d\left(g x_{1}, f x_{2}\right) \\
d\left(g x_{3}, f x_{2}\right) & \leq \frac{h}{P-h} d\left(g x_{1}, f x_{2}\right) \\
d\left(g x_{3}, f x_{2}\right) & \leq \sqrt{r} d\left(g x_{1}, f x_{2}\right) \\
& \leq \sqrt{r} \sqrt{r} d\left(f x_{0}, g x_{1}\right) \quad \text { (using 2.2) } \\
d\left(g x_{3}, f x_{2}\right) & \leq r d\left(f x_{0}, g x_{1}\right)
\end{aligned}
$$

Continuing in this way, we get a sequence $\left\{x_{n}\right\}$ in X such that $g x_{2 n+1} \in S f x_{2 n}$ and $f x_{2 n} \in T g x_{2 n+1}$ for all $n \geq 1$ and so

$$
d\left(g x_{2 n+1}, f x_{2 n}\right) \leq r^{n} d\left(f x_{0}, g x_{1}\right) \quad \text { for } n \geq 1
$$

and

$$
d\left(g x_{2 n+1}, f x_{2 n+2}\right) \leq r^{n+1 / 2} d\left(f x_{0}, g x_{1}\right) \quad \text { for } n \geq 0
$$

Thus $\left\{g x_{1}, f x_{2}, g x_{3}, f x_{4}, \ldots, f x_{2 n}, g x_{2 n+1}\right\}$ is a Cauchy sequence, since X is complete there is a point $z \in X$ such that

$$
\lim _{n \rightarrow \infty} g x_{2 n+1}=\lim _{n \rightarrow \infty} f x_{2 n}=z .
$$

Now, we will prove that Z is a coincidence point of f and S. For every $n \geq 0$, we have

$$
\begin{equation*}
d\left(f g x_{2 n+1}, S z\right) \leq d\left(f g x_{2 n+1}, S f x_{2 n}\right)+H\left(S f x_{2 n}, S z\right) \tag{3}
\end{equation*}
$$

It follows from H-continuity of S and $f x_{2 n} \rightarrow z$ as $n \rightarrow \infty$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} H\left(S f x_{2 n}, S z\right)=0 \tag{4}
\end{equation*}
$$

Since f and S are compatible mappings and

$$
\lim _{n \rightarrow \infty} f x_{2 n}=\lim _{n \rightarrow \infty} g x_{2 n+1}=z .
$$

and $g x_{2 n+1} \in S f x_{2 n}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(f g x_{2 n+1}, S f x_{2 n}\right)=0 \tag{5}
\end{equation*}
$$

Thus from (3), (4) and (5) we get

$$
\lim _{n \rightarrow \infty}\left(f g x_{2 n+1}, S z\right)=0
$$

and so $d(f z, S z) \leq d\left(f z, f g x_{2 n+1}\right)+d\left(f g x_{2 n+1}, S z\right)$.
Letting n tends to infinity, it follows that $d(f x, S z)=0$ this implies that $f z \in S z$ since $S z$ is closed subset of X and thus z is a coincidence point of f and S. Similarly, we can prove that z is a coincidence point of g and T.

To prove the uniqueness of the coincidence point, let $z \neq y$ be another coincidence point for the pairs f, S and of g, T. Then $f(z)=g(z)=z$ and $f(y)=g(y)=y$. Also $f(z) \in S(z)$ and $g(z) \in T(z), f(y) \in S(y)$ and $g(y) \in T(y)$.

Now, we have

$$
\begin{aligned}
H(S f z, T g y) \leq & h \max \{d(f z, S f z), \\
& d(g y, T g y), d(g y, S f z), d(f z, T g y), d(f z, g y)\}
\end{aligned}
$$

and so

$$
H(S z, T y) \leq h \max \{d(z, z), d(y, y), d(y, z), d(z, y), d(z, y)\} .
$$

Hence

$$
d(y, z) \leq H(z, y) \leq h d(y, z)<d(y, z)
$$

which is a contradiction.
This completes the proof of the theorem.
Letting $f=g$ as the identity mapping on X, in the above Theorem 2.1, we have the following corollary, which contains the result of Bose and Mukherjee [7].

Corollary 2.2. Let (X, d) be a complete metric space and let $S, T: X \rightarrow C B(X)$ be H-continuous multi-valued mappings such that
$H(S z, T y) \leq h \max \{d(x, S x), d(y, y), d(y, S x), d(x, T y), d(x, y)\}$.
for all $x, y \in X$ and $0 \leq h<1$, then S and T have a unique common fixed point in X.

Putting $f=g$ and $S=T$ in Theorem 2.1, we have the following corollary.

Corollary 2.3. Let (X, d) be a complete metric space. Let $f: X \rightarrow X$ be a continuous mapping and let $S: X \rightarrow C B(X)$ be an H-continuous mapping such that $S(X) \subseteq f(X)$ and

$$
\begin{aligned}
H(S f x, S f y) \leq & h \max \{d(f x, S f x) \\
& d(f y, S f y), d(f y, S f x), d(f x, S f y), d(f x, f y)\}
\end{aligned}
$$

for all $x, y \in X$ and $0 \leq h<1$. Then f and S have a unique coincidence point.

Putting $f=g=1$ and $T=S$ in Theorem 2.1, we have the following corollary, which includes the result of Ciric [9].

Corollary 2.4. Let (X, d) be a complete metric space and let $X \rightarrow C B$ continuous mapping such that

$$
H(S x, S y) \leq h \max \{d(x, S x), d(y, S y), d(x, S y), d(y, S x), d(x, y)\}
$$

for all $x, y \in X$ and $0 \leq h<1$. Then S has a unique fixed point.
Theorem 2.5. Let (X, d) be a complete metric space. Let f, g : $X \rightarrow X$ be continuous mappings and $S, T: X \rightarrow C B(X)$ be $H-$ continuous mappings such that $T(X) \subseteq f(X)$ and $S(X) \subseteq g(X)$; the fair S and g are compatible mappings and

```
H
    \leqmax{ad(fx,gy) d d-1}(fx,Sx),a\mp@subsup{d}{}{p-1}(gy,Ty)d(fx,gy),ad\mp@subsup{d}{}{p-1}(gy,Ty
```

$$
\begin{equation*}
\left.d(f x, S x), d(g y, S x)\left[c_{1} d^{p-1}(f x, T y)+c_{2} d^{p-1}(g y, T y)\right]\right\} \tag{6}
\end{equation*}
$$

for all $x, y \in X$, integer $p \geq 2,0<a<1$ and $c_{1}, c_{2} \geq 0$, then there exists a coincidence point z of f, S and g, T. Further. if $0<c_{1}<1$, then z is unique.

Proof. Let x_{0} be an arbitrary point in X. Since $S x_{0} \subseteq g(X)$, there exists a point $x_{1} \in X$ such that $g x_{1} \in S x_{0}$ and so there exists a point $x_{2} \in X$ such that $f x_{2} \in T x_{1}$.

Hence by Lemma 1.1, there is $k=a^{-1 / 2 p}>1$ with such that $d\left(g x_{1}, f x_{2}\right) \leq k H\left(S x_{0}, T x_{1}\right)$. Similarly, there exists a point $x_{3} \in$ X and $g x_{3} \in S x_{2}$ such that $d\left(g x_{3}, f x_{2}\right) \leq k H\left(S x_{2}, T x_{1}\right)$. Again, there exists a point $x_{4} \in X, f x_{4} \in T x_{3}$ such that $d\left(g x_{3}, f x_{4}\right) \leq$ $k H\left(S x_{2}, T x_{3}\right)$. Inductively, we can obtain a sequence $\left\{x_{n}\right\}$ in X such that for all $n \geq 0, f x_{2 n+2} \in T x_{2 n+1}$ and $g x_{2 n+1} \in S x_{2 n}$ and $d\left(g x_{2 n+1}, f x_{2 n+2}\right) \leq k H\left(S x_{2 n}, T x_{2 n+1}\right)$.

Hence

$$
\begin{aligned}
& d^{p}\left(g x_{2 n+1}, f x_{2 n+2}\right) \\
& \quad \leq k^{p} H^{p}\left(S x_{2 n}, T x_{2 n+1}\right) \\
& \quad \leq k^{P} \max \left\{a d\left(f x_{2 n}, g x_{2 n+1}\right) d^{p-1}\left(f x_{2 n}, S x_{2 n}\right), a d^{P-1}\left(g x_{2 n+1}, T x_{2 n+1}\right)\right. \\
& \quad d\left(f x_{2 n}, g x_{2 n+1}\right), a d^{P-1}\left(g x_{2 n+1}, T x_{2 n+1}\right) d\left(f x_{2 n}, S x_{2 n}\right), \\
& \left.\quad d\left(g x_{2 n+1}, S x_{2 n}\right)\left[c_{1} d^{P-1}\left(f x_{2 n}, T x_{2 n+1}\right)+c_{2} d^{P-1}\left(g x_{2 n+1}, T x_{2 n+1}\right)\right]\right\} \\
& \leq k^{P} \max \left\{a d\left(f x_{2 n}, g x_{2 n+1}\right) d^{P-1}\left(f x_{2 n}, g x_{2 n+1}\right) a d^{P-1}\left(g x_{2 n+1}, f x_{2 n+2}\right)\right. \\
& \quad d\left(f x_{2 n}, g x_{2 n+1}\right), a d^{P-1}\left(g x_{2 n+1}, f x_{2 n+2}\right) d\left(f x_{2 n}, g x_{2 n+1}\right)(\text { using } 2.1) \\
& \left.\quad d\left(g x_{2 n+1}, g x_{2 n+1}\right)\left[c_{1} d^{P-1}\left(f x_{2 n}, f x_{2 n+2}\right)+c_{2} d^{P-1}\left(g x_{2 n+1}, f x_{2 n+2}\right)\right]\right\} \\
& \quad \leq k^{P} a \max \left\{d^{P}\left(f x_{2 n}, g x_{2 n+1}\right), d^{P-1}\left(g x_{2 n+1}, f x_{2 n+2}\right) d\left(f x_{2 n}, g x_{2 n+1}\right)\right. \\
& \quad=a^{\frac{1}{2}} a \max \left\{d^{P}\left(f x_{2 n}, g x_{2 n+1}\right), d^{P-1}\left(g x_{2 n+1}, f x_{2 n+2}\right) d\left(f x_{2 n}, g x_{2 n+1}\right)\right\} \\
& d^{P}\left(g x_{2 n+1}, f x_{2 n+2}\right) \\
& \quad \leq \sqrt{a} \max \left\{d^{P}\left(f x_{2 n}, g x_{2 n+1}\right), d^{P-1}\left(g x_{2 n+1}, f x_{2 n+2}\right) d\left(f x_{2 n}, g x_{2 n+1}\right)\right\}
\end{aligned}
$$

If

$$
\begin{aligned}
& \max \left\{d^{p}\left(f x_{2 n}, g x_{2 n+1}\right), d^{p-1}\left(g x_{2 n+1}, f x_{2 n+2}\right) d\left(f x_{2 n}, g x_{2 n+1}\right)\right\} \\
& \quad=d^{p-1}\left(g x_{2 n+1}, f x_{2 n+2}\right) d\left(f x_{2 n}, g x_{2 n+1}\right)
\end{aligned}
$$

then

$$
d^{p}\left(f x_{2 n}, g x_{2 n+1}\right) \leq d^{p-1}\left(g x_{2 n+1}, f x_{2 n+2}\right) d\left(f x_{2 n}, g x_{2 n+1}\right)
$$

and so

$$
\begin{equation*}
d\left(f x_{2 n}, g x_{2 n+1}\right) \leq d\left(g x_{2 n+1}, f x_{2 n+2}\right) \tag{7}
\end{equation*}
$$

Also

$$
\begin{align*}
d^{p}\left(g x_{2 n+1}, f x_{2 n+2}\right) & \leq \sqrt{a} d^{p-1}\left(g x_{2 n+1}, f x_{2 n+2}\right) d\left(f x_{2 n}, g x_{2 n+1}\right) \\
d\left(g x_{2 n+1}, f x_{2 n+2}\right) & \leq \sqrt{a} d\left(f x_{2 n}, g x_{2 n+1}\right)<d\left(f x_{2 n}, g x_{2 n+1}\right) \tag{8}
\end{align*}
$$

Hence from (7) and (8)

$$
\begin{aligned}
& \max \left\{d^{p}\left(f x_{2 n}, g x_{2 n+1}\right), d^{p-1}\left(g x_{2 n+1}, f x_{2 n+2}\right), d\left(f x_{2 n}, g x_{2 n+1}\right)\right\} \\
& =d^{p}\left(f x_{2 n}, g x_{2 n+1}\right)
\end{aligned}
$$

Thus

$$
d^{p}\left(g x_{2 n+1}, f x_{2 n+2}\right) \leq \sqrt{a} d^{p}\left(g x_{2 n+1}, f x_{2 n}\right)
$$

and hence

$$
d\left(g x_{2 n+1}, f x_{2 n+2}\right) \leq \beta d\left(g x_{2 n+1}, f x_{2 n}\right) \quad \text { for } n \geq 0 .
$$

where $\beta=a^{1 / 2 p}<1$.
Also

$$
\begin{aligned}
d\left(g x_{2 n+1}, f x_{2 n+2}\right) & \leq \beta d\left(g x_{2 n-1}, f x_{2 n}\right) \quad \text { for } n \geq 1 \\
& \leq \beta^{n} d\left(g x_{1}, f x_{2}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty(\text { since } 0<\beta<1) .
\end{aligned}
$$

It follows that $\left\{g x_{1}, f x_{2}, g x_{3}, f x_{3}, f x_{4}, \ldots, g x_{2 n-1}, f x_{2 n} \ldots\right\}$ is a Cauchy sequence in X.

Since (X, d) is a complete metric space, there is a point z in X such that

$$
\lim _{n \rightarrow \infty} g x_{2 n+1}=\lim _{n \rightarrow \infty} f x_{2 n}=z
$$

Now we will prove that z is a coincidence point of f and S. For every $n \geq 1$, we have

$$
\begin{equation*}
d\left(f g x_{2 n+1}, S z\right) \leq d\left(f g x_{2 n+1}, S f x_{2 n}\right)+H\left(s f x_{2 n}, S z\right) \tag{9}
\end{equation*}
$$

It follows from H-continuity of S that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} H\left(S f x_{2 n}, S z\right)=0 \tag{10}
\end{equation*}
$$

Since $f x_{2 n} \rightarrow z$ as $n \rightarrow \infty$.

Since f and S are compatible mappings and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(f g x_{2 n+1}, S f x_{2 n}\right)=0 \tag{11}
\end{equation*}
$$

Thus from the identities (9), (10) and (11) we have $\lim _{n \rightarrow \infty} d\left(f g x_{2 n+1}, S z\right)$ $=0$ and so $d(f z, S z) \leq\left(f z, f g x_{2 n+1}\right)+d\left(f g x_{2 n+1}, S z\right)$. Letting $n \rightarrow \infty$, it follows that $d(f z, S z)=0$. This implies that $f z \in S z$, since $S z$ is a closed subset of X. Thus z is a coincidence point of f and S. Similarly, we prove that z is a coincidence point of g and T.

Suppose $z \neq y$ is an another coincidence point for the pair f, S and g, T then $f z=g z=z$ and $f y=g y=y$. This gives that $f(z) \in S(z), g(z) \in T(z)$ and $f(y) \in S(y), g(y) \in T(y)$ and so

$$
\begin{aligned}
d^{p}(\tilde{z}, y) \leq & H^{p}(S z, T y) \\
\leq & \max \left\{a d(f z, g y) d^{p-1}(f z, S z), a d^{p-1}(g y, T y) d(f z, g y), a d^{p-1}(g y, T y)\right. \\
& \left.\quad d(f z, S z), d(g y, S z)\left[c_{1} d^{p-1}(f z, T y)+c_{2} d^{p-1}(g y, T y)\right]\right\} \\
= & \max \left\{a d(z, y) \cdot 0,0 . d(z, y), a .0, d(y, z)\left\{c_{1}, d^{p-1}(z, y)+c_{2} x 0\right\}\right. \\
= & c_{1} d(y, z) d^{p-1}(y, z) \\
< & d^{p}(y, z) \quad\left(\text { since } c_{1}<1\right),
\end{aligned}
$$

which is a contradiction.
Hence f, S and g, T have a unique coincidence point.
Allowing $c_{1}=c$ and $c_{2}=0$ in Theorem 2.5, we have the following corollary.

Corollary 2.6 (Duran Turkoglu Orhan Ozer, and Brain Fisher [8]).
Let (X, d) be a complete metric space. Let $f, g: X \rightarrow X$ be continuous mappings and $S, T: X \rightarrow C B(X)$ be H-continuous mappings such that $T(X) \subseteq f(X)$ and $S(X) \subseteq g(X)$, the pair S and g are compatible mappings and

$$
\begin{array}{r}
H^{p}(S x, T y) \leq \max \left\{a d(f x, g y) d^{p-1}(f x, S y), a d(f x, g y) d^{p-1}(g y, T y)\right. \\
\left.\quad a d(f x, S x) d^{p-1}(g y, T y), c d^{p-1}(f x, T y) d(g y, S x)\right\}
\end{array}
$$

for all $x, y \in X$, where $p \geq 2$ is an integer, $0<a<1$ and $c \leq 0$. Then there exists a point $z \in X$, such that $f x \in S z$ and $g z \in T z$, i.e., z is a coincidence point of f, S and of g, T. Further, z is unique when $0<c<1$.

Letting $f=g$ as identity mapping on X, in Theorem 2.5, we have the following corollary.

Corollary 2.7. Let (X, d) be a complete metric space and let $S, T: X \rightarrow C B(X)$ be H-Continuous multi-valued mappings such that

$$
\begin{gathered}
H^{P}(S x, T y) \leq \max \left\{a d(x, y) d^{P-1}(x, S x), a d^{p-1}(y, T y) d(x, y), a d^{P-1}(y, T y)\right. \\
\left.d(x, S x), d(y, S x)\left[c_{1} d^{P-1}(x, T y)+c_{2} d^{p-1}(y, T y)\right]\right\}
\end{gathered}
$$

for all $x, y \in X$ where $p \geq 2$ is an integer $0<a<1$, and $c_{1}+c_{2} \geq 0$.
Then S and T have a common fixed-point z in X. Also S and T have a unique common fixed point z in X when $0<c_{1}<1$.

Putting $f=g$ and $S=T$ in Theorem 2.5, we have the following corollary.

Corollary 2.8. Let (X, d) be a complete metric space, let $f:$ $X \rightarrow X$ be a continuous mapping and let $S: X \rightarrow C B(X)$ be an H-continuous mapping such that $S(X) \subseteq f(X)$ and

$$
\begin{aligned}
& H^{P}(S x, S y) \\
& \quad \leq \max \left\{a d(f x, f y) d^{P-1}(f x, S x), a d^{p-1}(f y, S y) d(f x, f y)\right. \\
& \left.\quad a d^{P-1}(f y, S y) d(f x, S x), d(f y, S x)\left[c_{1} d^{P-1}(f x, S y)+c_{2} d^{p-1}(f y, S y)\right]\right\}
\end{aligned}
$$

for all $x, y \in X$ where $p \geq 2$ is an integer, $0<a<1$ and $c_{1}+c_{2} \geq 0$. Then there exists a coincidence point z of f and S.

ACKNOWLEDGEMENT

The authors are very thankful for Refree's for valuable sugestion for the improvement of the paper. This research work was partially supported by UGC of India through $X^{\text {th }}$ plan FDP Programme to third author.

REFERENCES

[1] G. Jungck, Compatible mappings and common fixed points, Internet J. Math. Math. Sci. 9:771-773, 1986.
[2] H. Kaneko, A common fixed point of weakly commating multi walued mappings, Math. Japan 33:741-744, 1988.
[3] H. Kaneko H. and S. Sessa, Fixed point theorems for compatable multi-valued and single-valued mappings, Internet. J. Math. Math. Sci. 12:257-262, 1989.
[4] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30:475488, 1969.
[5] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) 32:146-153, 1982.
[6] S. L. Singh, K. S. Ha and Y. J. Cho, Coincidence and fixed points of non linear hybrid contractions, Internet. J. Math. Math. Sci. 12:247-256, 1979.
[7] R. K. Bose and R. N. Mukherjee, Common fixed points of some multi-valued mapping, Tamukang Jour. Math. 8:245-249, 1977.
[8] D. Turkoglu D, O. Ozer and B. A. Fisher, Coincidence point theorem for multi-valued contractions, Mathematical Communications 7:39-44, 2002.
[9] L. B. Ciric, A generalization of Banach's Contraction principle, Proc. Amer. Math. Soc. 45:267-273, 1974, MR50 8484.

T. VEERAPANDI

Department of Mathematics
PMT College
Melaneelithanallur
Tamil Nadu, India.
E-mail: vrpnd@yahoo.co.in

T. TAMIZH CHELVAM

Department of Mathematics
Manonmaniam Sundaranar University
Tirunelveli 627012
Tamil Nadu, India.
E-mail: tamche_59@yahoo.co.in

M. MARIAPPAN

Department of Mathematics
PMT College
Melaneelithanallur
Tirunelveli, Tamil Nadu, India.
E-mail: mmn@yahoo.com

[^0]: Received October 10, 2005.
 2000 Mathematics Subject Classification: 54 H 25.
 Key words and phrases: coincidence point, multi-valued mapping, weakly Commuting mappings, compatible mappings.

