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COINCIDENCE POINT THEOREMS FOR SINGLE 
AND MULTI-VALUED CONTRACTIONS

T. Veerapandi, T. Tamizh Chelvam* and M. Mariappan

Abstract. In this paper two coincidence point theorems in 
complete metric spaces for two pairs of single and multi-valued 
mappings have been established.

1. Introduction

Let (X, d) be a metric space and let f and g be mappings from 

X into itself. In [5], Sessa defined f and g to be weakly commuting 

if d(gfx, fgx) < d(gx, fx) for all x e X. It can be seen that two 

commuting mappings are weakly commuting, but the converse is 

false as shown in the example of [5]. Recently Jungck [1] extended 

the concept of weak commutativity in the following way.

Let f and g be mappings from a metric space (X, d) into itself.

The mappings f and g are said to be compatible if limn^^ d(fgxn, gfxn)= 

0 whenever {Xn} is a sequence in X such that limn^^ fxn = limn^^ gxn = 

z for some z in X. It is obvious that two weakly commuting map

pings are compatible, but the converse is not true, as one can see 

from the examples in [1].

Recently Kaneko [2] and Singh et al. [6] extended the concepts of 

weak commutativity and compatibility for single valued mappings to 

the setting of single valued and multi valued mappings, respectively. 

Now let (x, d) be a metric space and let CB(X) denote the family 

of all non-empty closed and bounded subsets of X. Let H be the

Received October 10, 2005.
2000 Mathematics Subject Classification: 54H25.
Key words and phrases: coincidence point, multi-valued mapping, weakly 

Commuting mappings, compatible mappings.



152 T. Veerapandi, T. Tamizh Chelvam* and M. Mariappan

Hausdorff metric on CB (X) and it is defined as

H(A, B) = max{sup d(x,B), sup,d(y,A)} for A, B e CB(X),

I xeA yeB 丿

Where d(x, A) = infy&i d(X,y). It is well known that (CB(X), H) 

is a metric space. Further if (X, d) is complete, then (CB(X), H) is 

also complete.

The following lemma has been proved in Nadler [4].

Lemma 1.1. Let A, B e CB(X) and k > 1. Then for each a e A 

there exists a point b e B such that d(a, b) < kH(A, B).

Definition 1.2. Let (X, d) be a metric space and let f : X — X 

and S : X — CB(X) be single valued and multi valued mappings 

respectively. The mappings f and S are said to be weakly commuting 

if for all x e X, fSx e CB(X) and H(Sfx, fSx) < d(fx, Sx), where 

H is the Hausdorff metric defined on CB(X).

Definition 1.3. The mappings f and S are said to compatible 

if

lim d(fyn, Sfxn) = 0 
n—8

whenever {xn} and {yn} are sequence in X such that

lim fxn = lim yn = z for some z e X, 
n—8 n—8

where yn e Sxn for n = 1, 2,....

Remark 1.4.
(i) Definition 1.3 is slightly different from Kaneko’s [2] definition.

(ii) If S is a single valued mapping on X in Definitions 1.2 and 1.3, 

then Definitions 1.2 and 1.3 become the definitions of weak 

commutativity and compatibility for single valued mapping.

(iii) If the mappings f and S are weakly commuting, then they are 

compatible, but the converse is not true. In fact,suppose that 

f and S are weakly commuting and let {Xn} and {yn} be two 

sequences in X such that y& e SXn for n = 1,2,... and

lim fxn = lim yn = z for some z e X. 
n—8 n—8

From d(fxn, Sxn) < d(fxn, yn), it follows that

lim d(fxn, Sxn) = 0.
n—8
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Thus, f and S are weakly commuting, we have

lim H(Sfy”, fSx„) = 0. 
mx，

On the other hand, since d(fyn, Sfx”) < H(fSxn, Sfxn), we have

lim d(fyn, Sfxn) = 0, 
mx

which means that f and S are compatible.

Example 1.5. Let X = [1, oo) be set with the Euclidean metric 

d and define fx = 2x4 — 1 and Sx = [1,x2] for all X > 1. Note that 

f and S are continuous and S(X) = f (X) = X. Let {x”} and {y”} 

be sequences in X defined by

xn = yn = 1 for n = 1, 2,....

Then we have

jim fxn = gm y” = 1e x,
where y” 6 Sx”. On the other hand, we can show that H(f Sx”, Sfx”)= 

2(xn4 — 1)2 — 0 if and only if x” —1 as n — o and so, since 

d(fy”，Sfxn) < H(fSx”，Sfx”\ we have

lim d(fy”, Sfxn) = 0. 
”TX

Therefore f and S are compatible, but f and S are not weakly 

commuting at x = 2.

2. Main Results

In this section we prove two coincidence point theorems and some 

particular cases of the same as corollaries.

Theorem 2.1. Let (X, d) be a complete metric space. Let f, 
g : X — X be a continuous mappings and S, T : X — CB (X) be 

H continuous mappings. Suppose T(X) C f (X), S(X) C g(X), the 

pair S and g are compatible mappings and

⑴ H(Sfx, Tgy) < hmax{d(fx, f ),d(gy, Tgy),

d(gy,Sfx),d(fx, Tgy),d(fx, gy)}
for all x, y 6 X and 0 < h < 1. Then S, f and T, g have a unique 

coincidence point.
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Proof. Let xQ e X be any arbitrary element in X. Since S (X) C 
g(X) we have Sfx0 C g(X). This implies that there exists and 

element xi e X such that gx 1 e Sfx°. Since T(X) C f (X) we have 

Tgx 1 C f (X). Thus there exists X2 e X such that fx2 e Tgx 1 and

d(gx 1, fx2) < -H(Sfx0, Tgx 1) where P = V2h < 1.

P

Similarly, there exists X3 e X such that gx3 e Sfx2 and

d(gx3,fx2) < -H(Sfx2, Tgxi).
P

Now using (1), we have

H(Sfx0, Tgx 1) < hmax{d(fx0, Sfxo),d(gx 1, Tgxi),d(gx 1, Sfx0),

d(fx0, Tgx 1),d(fx0, gx 1)}
and so

1h
—H(Sfx0, Tgx 1) < — max{d(fx0, gx 1 ),d(gx 1,fx2),d(gx 1, gxJ, 
PP

d(fx 0,fx 2),d(fx 0, gx 1)}
h

d(gx 1,fx2) < — max{d(fx0,gx 1 ),d(gx 1,fx2),d(fx0,fx2)}
P

< —max(d(fx0, gx 1),d(gx 1,fx2),d(fx0, gx 1), +d(gx 1,fx2)} 
P

h
d(gx 1,fx2) < — [d(fx0, gx 1) + d(gx 1,fx2)]

P

(P — h) d(gx 1,fx2) < h d(fx0, gx 1)

This implies that

d(gx 1,fx2) < p L d(fx0, gx 1)
P — h

l h
(2) = y/r d(fx0, gx 1) where 0 < \屛 = ———- < 1.
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Also 

d(gx3,fx2) < PH(Sfx2, Tgx 1)

< phmax{d(fx2, Sfx2), d(gx 1, Tgx 1), d(gx 1, Sfx2), 

d(fx2, Tgx 1),d(fx2, gx 1)}
< Phmax{d(加公 gx3),d(gx 1,加2),d(gxx, gx3), 

d(fx2, fx2),dfx2, gx 1)}
< phmax{d(fx2, gx3),d(gx 1,fx2),d(gx 1,fx2) + d(fx2,fx3)} 

and hence

d(gx3,fx2) < ph{d(fx2, gx3) + d(gx 1,fx2)}(p - h)d(gx3,fx2)

< hd(gx 1,fx2)

h
d(gx 3,fx 2) < p-h d(gx 1,fx 2)

d(gx3,fx2) <、斤d(gx 1,fx2)

< VrVrd(fx0, gx 1) (using 2.2)

d(gx3,fx2) < rd(fx0, gx 1)

Continuing in this way, we get a sequence {xn} in X such that 

gx2n+1 G Sfx 2n and fx2n E Tgx2n+1 for all n > 1 and so

d(gx2n+1, fx2n) < 函(加0, 9x 1) for n > 1-

and

d(gx 2n+1, fx 2n+2) < 时아侦"了 °, g% J 血 仇 > 0.

Thus {gx 1, fx2, gx3, fx4,..., fx%□, gx2n+1} is a Cauchy sequence, since

X is complete there is a point z E X such that

lim gx2n+1 = lim fx2n = z 
n—8 n—8

Now, we will prove that Z is a coincidence point of f and S. For 

every n > 0, we have

⑶ d(fgx2n+1, Sz) < d(fgx2n+1, Sfx2n) + H(Sfx2n, Sz)
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It follows from H-continuity of S and fx^n — z as n — x that

(4) lim H(Sfx2n, Sz) = 0
n—8

Since f and S are compatible mappings and

lim fx 2n 
n—8

and gx2n+i E Sfx 2n we have

lim 9x2n+1 = z- 
n—8

⑸ lim d(fgx2n+1, Sfx2n) = 0
n—8

Thus from (3), (4) and (5) we get

lim (fgx 2n+1, Sz) = 0 
n—8 -

and so d(fz, Sz) < d(fz, fgx2n+i) + d(fgx 2n+1， Sz )•

Letting n tends to infinity, it follows that d(fx, Sz) = 0 this implies 

that fz E Sz since Sz is closed subset of X and thus z is a coincidence 

point of f and S. Similarly, we can prove that z is a coincidence point 

of g and T.

To prove the uniqueness of the coincidence point, let z = y be 

another coincidence point for the pairs f , S and of g , T. Then 

f(z) = g(z) = z and f(y) = g(y) = y. Also f(z) E S(z) and 

g(z) E T(z),f(y) E S(y) and g(y) E T(y).
Now, we have

H(Sfz, Tgy) < hmax{d(fz, Sfz),

d(gy, Tgy),d(gy, Sfz),d(fz, Tgy\d(fz, gy)} 

and so

H(Sz, Ty) < hmax{d(z，z)，d(y,y)，d(y，z)，d(z，y)，d(z，y)}.

Hence

d(y,z) < H(z，y) < hd(y，z) < d(y,z), 

which is a contradiction.

This completes the proof of the theorem. □

Letting f = g as the identity mapping on X , in the above The

orem 2.1, we have the following corollary, which contains the result 

of Bose and Mukherjee [7].
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Corollary 2.2. Let (X,d) be a complete metric space and let 

S,T : X — CB(X) be H-continuous multi-valued mappings such 

that

H(Sz, Ty) < hmax{d(x, Sx), d(y, y), d(y, Sx),d(x, Ty), d(x, y)}. 

for all x, y G X and 0 < h < 1, then S and T have a unique common 

fixed point in X.

Putting f = g and S = T in Theorem 2.1, we have the following 

corollary.

Corollary 2.3. Let (X, d) be a complete metric space. Let 

f : X — X be a continuous mapping and let S : X — CB (X) be an 

H-continuous mapping such that S(X) C f (X) and

H(Sfx, Sfy) < hmax{d(fX, Sfx),

d(fy, Sfy ),d(fy,Sfx ),d(fx, Sfy),d(fx, fy)}
for all x, y G X and 0 < h < 1. Then f and S have a unique 

coincidence point.

Putting f = g = 1 and T = S in Theorem 2.1, we have the 

following corollary, which includes the result of Ciric [9].

Corollary 2.4. Let (X, d) be a complete metric space and let 

X — CB continuous mapping such that

H(Sx, Sy) < hmax{d(x, Sx), d(y, Sy), d(x, Sy), d(y, Sx),d(x, y)} 

for all x, y G X and 0 < h < 1. Then S has a unique fixed point.

Theorem 2.5. Let (X, d) be a complete metric space. Let f, g : 

X — X be continuous mappings and S, T : X — CB (X) be H- 

continuous mappings such that T(X) C f (X) and S(X) C g(X); 
the fair S and g are compatible mappings and

Hp(Sx, Ty)

< max{ad(fx, gy沖-侦, Sx), adp-1(gy, Ty)d(fx, gy), adp-1(gy, Ty) 

⑹

d(fx, Sx),d(gy, Sx)[C!dP~1(fx, Ty) + c2dp-1(gy, Ty)]}
for all x,y G X, integer p > 2, 0 < a < 1 and Ci, c2 > 0, then there 

exists a coincidence point z of f, S and g, T. Further. if 0 < Ci < 1, 
then z is unique.



158 T. Veerapandi, T. Tamizh Chelvam* and M. Mariappan

Proof. Let xQ be an arbitrary point in X. Since Sx0 C g(X), 

there exists a point xi e X such that gx 1 E Sx0 and so there exists 

a point X2 e X such that fx2 e Tx 1.

Hence by Lemma 1.1, there is k = a「니/2 > 1 with such that 

d(gxi, fx2) < kH(Sx0, Tx 1). Similarly, there exists a point X3 e 
X and gx3 e Sx/ such that d(gx3, fx/) < kH(Sx/, Tx 1). Again, 

there exists a point X4 e X, fx4 e Tx3 such that d(gx3, fx4) < 
kH(Sx2, Tx3). Inductively, we can obtain a sequence {xn} in X 

such that for all n > 0, fx2n+2 e Tx2n+i and gx2n+i e Sx2n and 

d(gx2n+1, fx2n+2) < kH (Sx2n, Tx2n+1).

Hence 

dP(gx2n+1, fx2n+2)

< kPHP(Sx2n, Tx2n+1)

< kP max{ad(fx赤 gx2n+1)dp-1(fx2n, Sx眼),adP-1(gx2n+1, Tx2n+1) 

d(fx2n, gx2n+1), ad'-g2n+1, Tx2n+1)d(fx2n, Sx2n),

d(gx2n+1, Sx2n)[c1d (fx2n, Tx2n+1) + c2d (gx2n+1, Tx 2n+1)]}

< k max{ad (fx 2n, gx 2n+1)dP-1 (fx 2n, 9x 2n+1)ad '-1 (9x 2n+1, fx 2n+2) 

d(fx2n, gx2n+1), ad'-132n+1, fx2n+2)d(fx2n, ffx2n+1, ) (using 2.1) 

d(gx2n+1, gx2n+1)[c1dP-1(fx2n, fx2n+2) + C2dP-1(gx2n+1, fx2n+2)]}
< k a max{dP (fx 2n, gx 2n+1),dP-13 2n+1, fx 2n+2) d(fx 2n, 9x 2n+1)

=a 1 a max{dP(fx2n, gx2n+1),dP-1 (9x2n+1, fx2n+2) d(fx2n, 9x2n+1)} 
dP(gx2n+1, fx2n+2)

< Va max{dP(fx2n, gx2n+1 M-1 (gx2n+1, fx2n+2)d(fx2n, 9x2n+1)}
If

max{dP(fx2n, gx2n+1),dP-1(gx2n+1, fx2n+2)d(fx2n, 9x2n+1)}
=dP-1(gx2n+1, fx2n+2)d(fx2n, 9x2n+1) 

then

dP(fx2n, gx2n+1) < d2-1 (gx2n+1, fx2n+2)d(fx2n, 9x2n+1)
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and so

⑺

Also

(8)

d(、加2n, gx2n+1) < 出、伊2„+1，fX2n+2)

dP(gX 2n+1, fx 2n+2) < 験旷'3 2n+1, fx 2n+2)d(fx 2n, gx 2n+J 

d(QX2n+1, fx2n+2) <、/"初2n, gx2n+1) < d(fx2n, gx2n+1)

Hence from (7)and (8)

max{dP(fx 2n, gx 2n+1),dP-1(gx 2n+1, fx 2n+2) , d(fx 2n, 9x 2n+1)} 
= dP(fx 2n, gx 2n+1)

Thus

决侦2n+1, fx2n+2) < VadP(gx2n+1, fx2n)

and hence

d(gx2n+1, fx2n+2) < 闵(舛2n+1, fx2n) for n > °.

where f3 = a니2 < 1.

Also

d(gX2n+1, fx2n+2) < 伽32n-1, fx2n) for n > 1

< ]3nd(gx 1，fx2) — 0 as n — x (since 0 < B < 1).

It follows that {gX1，fx2, gx3, fx3, fx4, ...，gx2n-1, fx2n ..• } is a Cauchy 

sequence in X.

Since (X, d) is a complete metric space, there is a point z in X 

such that

lim gx2n+1 = lim fx2n = z n—8 n—8
Now we will prove that z is a coincidence point of f and S. For 

every n > 1, we have

⑼ d(fgx2n+1, Sz) < d(fgx2n+1, Sfx2Q + H(Sfx2n, Sz)

It follows from H-continuity of S that

(10) lim H(Sfx2n, Sz) = 0
n—8

Since fx2n — z as n — x. 口
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Since f and S are compatible mappings and

(11) lim d(fgx2n+1, Sfx2n) = 0
n—8

Thus from the identities (9), (10) and (11) we have limn^^ d(fgx2n+i, Sz) 

=0 and so d(fz, Sz) < (fz, fgx2n+i) + d(fgx2n+i, Sz). Letting n — x, 

it follows that d(fz, Sz) = 0. This implies that fz e Sz, since Sz is 

a closed subset of X. Thus z is a coincidence point of f and S. 

Similarly, we prove that z is a coincidence point of g and T.

Suppose z = y is an another coincidence point for the pair f, S 

and g,T then fz = gz = z and fy = gy = y. This gives that 

f (z) e S(z),g(z) e T(z) and f (y) e S(y),g(y) e T(y) and so

dp(z,y) < Hp(Sz, Ty)

< max{ad(fz, gy)dp-1(fz, Sz), adp-1(gy, Ty)d(fz, gy), adp-1(gy, Ty)

d(fz, Sz),d(gy, Sz)[C1dpT(fz, Ty) + C2dP-1(gy, Ty)]}
=max{ad(z, y).0, 0.d(z, y), a.0, d(y, z){q, dp-1(z, y) + c2x0}

=c1d(y,z)dP-1(y,z)

< dp(y, z) (since C1 < 1),

which is a contradiction.

Hence f, S and g, T have a unique coincidence point.

Allowing C1 = c and C2 = 0 in Theorem 2.5, we have the following 

corollary.

Corollary 2.6 (Duran Turkoglu Orhan Ozer, and Brain Fisher [8]).

Let (X, d) be a complete metric space. Let f, g : X — X be con

tinuous mappings and S, T : X — CB(X) be H-continuous map
pings such that T(X) C f (X) and S(X) C g(X), the pair S and g 

are compatible mappings and

HM^d；, Ty) < max{ad(fx, gy)dP-1(fx, Sy), ad(fx, gy)dp-1(gy, Ty),

ad(fx,Sx)dp-1(gy, Ty),cdp-1(fx, Ty)d(gy,Sx)}
for all x, y e X: where p > 2 is an integer, 0 < a < 1 and c < 0. 
Then there exists a point z e X, such that fx e Sz and gz e Tz, 

i.e., z is a coincidence point of f, S and of g, T. Further, z is unique 

when 0 < c < 1.
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Letting f = g as identity mapping on X, in Theorem 2.5, we have 

the following corollary.

Corollary 2.7. Let (X,d) be a complete metric space and let 

S,T : X — CB(X) be H-Continuous multi-valued mappings such 

that

HP(Sx, Ty) < max{ad(x, y)dP-1 (x, Sx), adp-1(y, Ty)d(x, y), adP-1(y, Ty) 

d(x, Sx), d(y, Sx)[cidP-1(x, Ty) + c2dp~1(y, Ty)]}

for all x, y e X where p > 2 is an integer 0 < a < 1, and C1 + C2 > 0.

Then S and T have a common fixed-point z in X. Also S and T 

have a unique common fixed point z in X when 0 < C1 < 1.

Putting f = g and S = T in Theorem 2.5, we have the following 

corollary.

Corollary 2.8. Let (X, d) be a complete metric space, let f : 

X — X be a continuous mapping and let S : X — CB (X) be an 

H-continuous mapping such that S(X) C f (X) and

HP(Sx, Sy)

< max{ad(fx, fy)dPS, Sx), adp-1(fy, Sy)d(fx, fy),

adP-1(fy, Sy)d(fx,Sx),d(fy,Sx)[c1dP-1 (fx, Sy) + c2dP~1(fy, Sy)]}
for all x, y e X where p > 2 is an integer, 0 < a < 1 and C1 + C2 > 0. 
Then there exists a coincidence point z of f and S.
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