East Asian Math. J. 22 (2006), No. 2, pp. 189–193

NOTES ON GRADING MONOIDS

JE YOON LEE* AND CHUL HWAN PARK

ABSTRACT. Throughout this paper, a semigroup S will denote a torsion free grading monoid, and it is a non-zero semigroup with 0. The operation is written additively. The aim of this paper is to study semigroup version of an integral domain ([1],[3],[4] and [5]).

1. Introduction

Let S be an additive commutative semigroup with identity (denoted by 0), that is a monoid. A monoid S is said to be *cancellative* if x + y = x + z with x, y and $z \in S$ implies y = z and S is said to be *torsion-free* if nx = ny with $x, y \in S$ and $n \in N$ implies x = y where N denotes the set of all positive integers. A cancellative monoid is called a *grading monoid* [10,p.112]. In this paper, a semigroup S will denote a torsion free grading monoid, and it is a non-zero semigroup with 0. The operation is written additively.

A nonempty subset B of a semigroup S is called an *additive system* if it satisfies the following condition $b_1, b_2 \in B \Rightarrow b_1 + b_2 \in B$. For an additive system B, the *quotient semigroup* S_B is defined as follows: $\{s - b \mid s \in S, b \in B\}$. Especially, if B = S, then the quotient semigroup $S_S = \{s_1 - s_2 \mid s_1, s_2 \in S\}$ is called the *quotient group* of S, and is denoted by q(s) = G. T is called an *oversemigroup* of S if T is a subsemigroup of G containing S.

An *ideal* of S is a nonempty suset I of S such that $s + I = \{s + i | i \in I\} \subseteq I$ for each $s \in S$. For an ideal I, J of S, set $I^{-1} = \{x \in G | x + I \subseteq I\}$

Received February 23, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 21M14.

Key words and phrases: Seminormal semigroup, Pseudo valuation semigroup.

^{*}The first author was supported by University of Ulsan Research Fund in 2004.

J.Y.LEE* AND C.H. PARK

S}. Let J be an ideal of S. Set $rad(J) = \{s \in S | ns \in J \text{ for some } n \in Z_0\}$. I is called a *radical ideal* of S if I = rad(I). For each $x \in S$, set (x) = x + S. An ideal of S is principal if I = (x). An ideal P of S is prime if $x + y \in P$ implies $x \in P$ or $y \in P$ for $x, y \in S$. An element s of S is called a unit if s + u = 0 for some $u \in S$. Also set $M = \{m \in S | m \text{ is a non-unit element of } S\}$. Then M is the unique maximal ideal of S. A semigroup S is called *valuation semigroup* if either $\alpha \in S$ or $-\alpha \in S$ for each $\alpha \in G$. Throuhout this paper, we may refer to [6],[7],[8] and [9].

2. Results

A semigroup S is called *seminormal semigroup* if for each $x \in G$ such that there is a positive integer n with $mx \in S$ for all $m \ge n$ then $x \in S$, or equivalently, if $2\alpha, 3\alpha \in S$ for $\alpha \in G$ then $\alpha \in G(\text{cf.}[3],[6],[8] \text{ and } [9])$.

THEOREM 2.1. Let S be a seminormal semigroup with quotient group G and I be an ideal of S. Then (rad(I) : rad(I)) is a seminormal and $(rad(I) : rad(I)) = \{x \in G | nx \in (S : I) \text{ for all } n \geq 1\}.$

Proof. Clearly (rad(I) : rad(I)) is a subsemigroup of (S : I). We first show that $(rad(I) : rad(I)) = \{x \in G | nx \in (S : I) \text{ for all } n \geq 1\}$. Let $x \in G$ such that $mx \in (S : I)$ for all $m \geq 1$ and $a \in rad(I)$. Then $na \in I$ for some positive integer n. Hence, for all $m \geq n$, $m(x+a) \in S$. By seminormality of S we have $x + a \in S$. Also $(n+1)(x+a) = (n+1)x + na + a \in (S : I) + I + rad(I) \subseteq rad(I)$. Thus $x+a \in rad(I)$. Therefore $x \in (rad(I) : rad(I))$. The converse incusion is clear. Finally, we will show that (rad(I) : rad(I)) is seminormal. Let $nx \in (rad(I) : rad(I))$ for all $n \geq 1$. Since $nx \in (R : I)$ for all $n \geq 1$, we have $x \in (rad(I) : rad(I))$. Therefore (rad(I) : rad(I)) is seminormal.

COROLLARY 2.2. If S is a seminormal semigroup and I is a radical ideal, then the semigroup (I : I) is seminormal semigroup.

THEOREM 2.3. Let S be a seminormal semigroup with quotient group G and I be a prime ideal of S. Then P^{-1} is a subsemigroup of G if and only if $P^{-1} = (P : P)$.

190

Proof. Since one direction is trivial, we assume P^{-1} is a subsemigroup of G and $P^{-1} \neq (P : P)$. Let $J = (S : P^{-1})$. We claim J = P. Since $P + P^{-1} \subseteq S$, we have $P \subseteq J$. Let $a \in J$, then $a + P^{-1} \subseteq S \subseteq (P : P)$ and so $(a + P^{-1}) + P = a + (P^{-1} + P) \subseteq P$. since P is prime and $P + P^{-1} \not\subseteq a \in P$. Whence, J = P. This is contradicts the fact that $P^{-1} \neq (P : P)$.

THEOREM 2.4. Let S be a seminormal semigroup with quotient group G and I be an ideal of S for which I^{-1} is a semigroup. Then

(1) $rad(I)^{-1} = (rad(I) : rad(I));$

(2) $I^{-1} = (rad(I) : I) = (J : I)$ for each prime $I \subseteq J$.

Proof. (1) since $rad(I) \subseteq S$, $(rad(I) : rad(I)) \subseteq rad(I)^{-1}$. To prove $rad(I)^{-1} \subseteq (rad(I) : rad(I))$, let $x \in (rad(I))^{-1}$ and $a \in rad(I)$. Then $na \in I$ for some positive integer n. Since $(rad(I))^{-1} \subseteq I^{-1}$ and I^{-1} is a semigroup, we have $2nx \in I^{-1}$. Hence $2nx + na \in I^{-1} + I \subseteq S$, whence $2n(x + a) = (2nx + na) + na \in S + I$. Since $x + a \in S$, this implies that $x + a \in rad(I)$. Therefore $rad(I)^{-1} = (rad(I)rad(I))$.

(3) It is enough to establish the inclusion $I^{-1} = (J : I)$. for each prime $I \subseteq J$ Let $x \in I^{-1}$. Since I^{-1} is a semigroup, we have $2x \in I^{-1}$, it follows that $2x + I \subseteq S$ and $2(x + I) = (2x + I) + I \subseteq I \subseteq J$. Since $x + I \subseteq S$, we have $x + I \subseteq J$. Thus $I + I^{-1} \subseteq J$, $I^{-1} \subseteq (J : I) \subseteq (S : I) = I^{-1}$, we have $I^{-1} = (J : I)$. Since this is true for each J, we have $I + I^{-1} \subseteq rad(I)$. Therefore $I^{-1} = (rad(I) : rad(I))$.

A prime ideal P of S is called *strongly prime* if $x, y \in G$ and $x + y \in P$ implies that $x \in P$ or $y \in P$. S is called *pseudo-valuation semigroup* if every prime ideal of S is strongly prime[3].

The following Lemma is useful restatement of definition of strongly prime ideal in semigroup S.

LEMMA 2.5. Let P be a prime ideal of a semigroup with quotient group G. Then P is strongly prime ideal if and only if $-x + P \subseteq P$ for each $x \in G \setminus S$.

Proof. Suppose that I is strongly prime. Let $f x \in G \setminus S$ and $p \in P$. Since $p = (p - x) + x \in P$ and P is strongly prime ideal, we have $(p - x) \in P$ or $x \in P$. Since $x \notin S$ we must have $p - x \in P$. Thus $-x + P \subseteq P$. To prove opposite implication, assume $-x + P \subseteq P$ whenever $x \in G \setminus S$, and let $a + b \in P$. If $a, b \in S$ there is nothing to prove. Hence we may assume $a \notin S$ so that $-a + P \subseteq P$ and $b = -a + a + b \in P$. T

THEOREM 2.6. Let P be an ideal in semigroup S with quotient group G. Then following statements are equivalent.

- (1) P is strongly prime;
- (2) $G \setminus P$ additive system;
- (3) P is prime and is comparable to each (principal) fractional ideal of S.;
- (4) P: P is valuation semigroup with maximal ideal P;
- (5) P is a prime ideal in some valuation oversemigroup of S.

Proof. Clearly (1) and (2) are equivalent. (1) \Rightarrow (3)Suppose that P is strongly prime ideal. Let $x \in G \setminus P$. Then $x + (-x + P) \subseteq P$. Since P is strongly prime, $-x + P \subseteq P$ and hence $P \subseteq x + P \subseteq x + S$. (3) \Rightarrow (2) Let $x, y \in S$. Suppose that $x + y \in P$. Now $x \in S$ implies $P \subsetneq X + S$, So $-x + P \subsetneq S$. Then $y = -x + (x + y) \in -x + P \subseteq S$. Similarly, $x \in S$. But then we get contradiction that either $x \in P$ or $y \in P$ since P is prime. (1) \Rightarrow (4). Suppose that $x \in G \setminus P$. From the proof of (1) \Rightarrow (3), we see that $-x + P \subset P$, and hence $-x \in (P : P)$. From this it easily follows that P : P is a valuation semigroup with P as its maximal ideal. Finally, the implications (4) \Rightarrow (5) and (5) \Rightarrow (1) are obvious.

In the following Theorem we characterize pseudo-valuation semigroup with the maximal ideals

THEOREM 2.7. Let (S, M) be a semigroup. The following statement are equivalent:

- (1) S is pseudo-valuation semigroup
- (2) For each pair I, J of ideals of S, either $I \subseteq J$ or $M + J \subseteq M + I$.;
- (3) For each pair I, J of ideals of S, either $I \subseteq J$ or $M + J \subseteq I$.;
- (4) M is strongly prime.

Proof. (1) \Rightarrow (2) Assume $I \not\subseteq J$. Let $a \in I \setminus J$. For each $b \in J$ we have $a-b \notin S$, so that $-(a-b)+M \subseteq M$ and $M+b \subseteq M+a \subseteq M+I$. It follows that $M+J \subseteq M+I$.

192

$(2) \Rightarrow (3)$ straightforward.

 $(3) \Rightarrow (4)$ Let $a, b \in S$ with $a - b \notin S$. By Lemma 2.5, this is enough to show that $-(a - b) + M \subseteq M$. Since $a - b \notin S$ we have $(a) \notin (b)$ whence $M + b \subseteq (a)$ and $-(a - b) + M \subseteq S$. If -(a - b) + M = Sthen M = S + (a - b) and $a - b \notin S$, This is a contradiction. Hence $-(a - b) + M \subseteq M$. Therefore M is stronly prime ideal

(4) \Rightarrow (1) Let $x \in G$, $x \notin S$, and let P be a prime ideal. Again ,by Lemma 2.5, it is enough to show that $-x + P \subseteq P$. Let $p \in P$. Since $P \subseteq M$, we have $-x + p \in M$. Hence $-x + p - x \in M$, whence $2(-x+p) = (-x+p) + (-x+p) \in P$. Since P is prime and $-x+p \in S$, we therefore have $-x + p \in P$.

REFERENCES

- D.D.Anderson and David F. Anderson, Multiplicatively closed subsets of Fields, Houston Journal of Mathematics 13(1) (1987), 429-439.
- [2] R.Gilmer, Multiplicative Ideal Theory, Marcel Dekker,, 1988.
- [3] E.G. Hedstrom an E.G. Houston, pseudo-valuation domain, Pacific Journal of Mathematics 75(1) (1978), 137-147.
- [4] Evan G. Houston, Salah-Eddine Kabbaj, Tomas G. Lucas and Abdeslam Mimouni, emph When is the dual of an ideal a ring, Journal of Algebra 225 (2000), 429-450.
- [5] James A. Huckaba and Ira J. Papick, When the dual of an ideal is a ring, manuscripta math. 37 (1982), 67-85.
- [6] Lee, D.S. and Park, C.H., Some remarks on semigroups, Far East J.Math.Sci. ,11(3), (2003), 269-275.
- [7] Matsuda R.and Kanemisu M., Primary ideals and valuation ideals in semigroups, Southeast Asian Bulletin of Mathematics 26(2002), 433-437.
- [8] Matsuda R.and Kanemisu M., On seminormal semigroups, Arc. Math., 69 (1997), 279-285.
- [9] Matsuda R., On Seminormal semigroups and Pesudo-valuation Semigroups, Jp Journal of Algebra, Number Theory and Applications 1(1) (2001, 25-39.
- [10] D.G.Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge Univ. Press,(1968).

Department of Mathematics University of Ulsan Ulsan 680-749, Korea *E-mail*: jylee@ulsan.ac.kr

J.Y.LEE* AND C.H. PARK

Department of Mathematics University of Ulsan Ulsan 680-749, Korea *E-mail*: chpark@ulsan.ac.kr

194