NOTES ON GRADING MONOIDS

Je Yoon Lee* and Chul Hwan Park

Abstract

Throughout this paper, a semigroup S^{\prime} will denote a torsion free grading monoid, and it is a non-zero semigroup with 0 . The operation is written additively. The aim of this paper is to study semigroup version of an integral domain ($[1],[3],[4]$ and [5]).

1. Introduction

Let S be an additive commutative semigroup with identity (denoted by 0), that is a monoid. A monoid S is said to be cancellative if $x+y=x+z$ with x, y and $z \in S$ implies $y=z$ and S is said to be torsion-free if $n x=n y$ with $x, y \in S$ and $n \in N$ implies $x=y$ where N denotes the set of all positive integers. A cancellative monoid is called a grading monoid [10,p.112]. In this paper, a semigroup S will denote a torsion free grading monoid, and it is a non-zero semigroup with 0 . The operation is written additively.

A nonempty subset B of a semigroup S is called an additive system if it satiesfies the following condition $b_{1}, b_{2} \in B \Rightarrow b_{1}+b_{2} \in B$. For an additive system B, the quotient semigroup S_{B} is defined as follows: $\{s-b \mid s \in S, b \in B\}$. Especially, if $B=S$, then the quotient semigroup $S_{S}=\left\{s_{1}-s_{2} \mid s_{1}, s_{2} \in S\right\}$ is called the quotient group of S, and is denoted by $q(s)=G . T$ is called an oversemigroup of S if T is a subsemigroup of G containing S.

An ideal of S is a nonempty suset I of S such that $s+I=\{s+i \mid i \in$ $I\} \subseteq I$ for each $s \in S$. For an ideal I, J of S, set $I^{-1}=\{x \in G \mid x+I \subseteq$

Received February 23, 2006.
2000 Mathematics Subject Classification: Primary 21 M 14.
Key words and phrases: Seminormal semigroup, Pseudo valuation semigroup.
*The first author was supported by University of Ulsan Research Fund in 2004.
$S\}$. Let J be an ideal of S. Set $\operatorname{rad}(J)=\{s \in S \mid n s \in J$ for some $\left.n \in Z_{0}\right\}$. I is called a radical ideal of S if $I=\operatorname{rad}(I)$. For each $x \in S$, set $(x)=x+S$. An ideal of S is principal if $I=(x)$. An ideal P of S is prime if $x+y \in P$ implies $x \in P$ or $y \in P$ for $x, y \in S$. An element s of S is called a unit if $s+u=0$ for some $u \in S$. Also set $M=\{m \in S \mid m$ is a non-unit element of $S\}$. Then M is the unique maximal ideal of S. A semigroup S is called valuation semigroup if either $\alpha \in S$ or $-\alpha \in S$ for each $\alpha \in G$. Throuhout this paper, we may refer to $[6],[7],[8]$ and $[9]$.

2. Results

A semigroup S is called seminormal semigroup if for each $x \in G$ such that there is a positive integer n with $m x \in S$ for all $m \geq n$ then $x \in S$, or equvalently, if $2 \alpha, 3 \alpha \in S$ for $\alpha \in G$ then $\alpha \in G(c f .[3],[6],[8]$ and [9]).

Theorem 2.1. Let S be a seminormal semigroup with quotient group G and I be an ideal of S. Then $(\operatorname{rad}(I): \operatorname{rad}(I))$ is a seminormal and $(\operatorname{rad}(I): \operatorname{rad}(I))=\{x \in G \mid n x \in(S: I)$ for all $n \geq 1\}$.

Proof. Clearly $(\operatorname{rad}(I): \operatorname{rad}(I))$ is a subsemigroup of $(S: I)$. We first show that $(\operatorname{rad}(I): \operatorname{rad}(I))=\{x \in G \mid n x \in(S: I)$ for all $n \geq 1\}$. Let $x \in G$ such that $m x \in(S: I)$ for all $m \geq 1$ and $a \in \operatorname{rad}(I)$. Then $n a \in I$ for some positive integer n. Hence, for all $m \geq n, m(x+a) \in S$. By seminormality of S we have $x+a \in S$. Also $(n+1)(x+a)=(n+1) x+n a+a \in(S: I)+I+\operatorname{rad}(I) \subseteq \operatorname{rad}(I)$. Thus $x+a \in \operatorname{rad}(I)$. Therefore $x \in(\operatorname{rad}(I): \operatorname{rad}(I))$. The converse incusion is clear. Finally, we will show that $(\operatorname{rad}(I): \operatorname{rad}(I))$ is seminormal. Let $n x \in(\operatorname{rad}(I): \operatorname{rad}(I))$ for all $n \geq 1$. Since $n x \in(R: I)$ for all $n \geq 1$, we have $x \in(\operatorname{rad}(I): \operatorname{rad}(I))$. Therefore $(\operatorname{rad}(I): \operatorname{rad}(I))$ is seminormal semigroup.

Corollary 2.2. If S is a seminormal semigroup and I is a radical ideal, then the semigroup ($I: I$) is seminormal semigroup.

Theorem 2.3. Let S be a seminormal semigroup with quotient group G and I be a prime ideal of S. Then P^{-1} is a subsemigroup of G if and only if $P^{-1}=(P: P)$.

Proof. Since one direction is trivial, we assume P^{-1} is a subsemigroup of G and $P^{-1} \neq(P: P)$. Let $J=\left(S: P^{-1}\right)$. We claim $\mathrm{J}=\mathrm{P}$. Since $P+P^{-1} \subseteq S$, we have $P \subseteq J$. Let $a \in J$, then $a+P^{-1} \subseteq S \subseteq(P: P)$ and so $\left(a+P^{-1}\right)+P=a+\left(P^{-1}+P\right) \subseteq P$. since P is prime and $P+P^{-1} \nsubseteq, a \in P$. Whence, $J=P$. This is contradictsthe fact that $P^{-1} \neq(P: P)$.

Theorem 2.4. Let S be a seminormal semigroup with quotient group G and I be an ideal of S for which I^{-1} is a semigroup. Then
(1) $\operatorname{rad}(I)^{-1}=(\operatorname{rad}(I): \operatorname{rad}(I))$;
(2) $I^{-1}=(\operatorname{rad}(I): I)=(J: I)$ for each prime $I \subseteq J$.

Proof. (1) since $\operatorname{rad}(I) \subseteq S,(\operatorname{rad}(I): \operatorname{rad}(I)) \subseteq \operatorname{rad}(I)^{-1}$. To prove $\operatorname{rad}(I)^{-1} \subseteq(\operatorname{rad}(I): \operatorname{rad}(I))$, let $x \in(\operatorname{rad}(I))^{-1}$ and $a \in \operatorname{rad}(I)$.. Then $n a \in I$ for some positive integer n. Since $(\operatorname{rad}(I))^{-1} \subseteq I^{-1}$ and I^{-1} is a semigroup, we have $2 n x \in I^{-1}$. Hence $2 n x+n a \in I^{-1}+I \subseteq S$, whence $2 n(x+a)=(2 n x+n a)+n a \in S+I$. Since $x+a \in S$, this implies that $x+a \in \operatorname{rad}(I)$. Therefore $\operatorname{rad}(I)^{-1}=(\operatorname{rad}(I) \operatorname{rad}(I))$.
(3) It is enough to establish the inclusion $I^{-1}=(J: I)$. for each prime $I \subseteq J$ Let $x \in I^{-1}$. Since I^{-1} is a semigroup, we have $2 x \in I^{-1}$, it follows that $2 x+I \subseteq S$ and $2(x+I)=(2 x+I)+I \subseteq I \subseteq J$. Since $x+I \subseteq S$, we have $x+I \subseteq J$. Thus $I+I^{-1} \subseteq J, I^{-1} \subseteq(J: I) \subseteq(S:$ $I)=I^{-1}$, we have $I^{-1}=(J: I)$. Since this is true for each J, we have $I+I^{-1} \subseteq \operatorname{rad}(I)$. Therefore $I^{-1}=(\operatorname{rad}(I): \operatorname{rad}(I))$.

A prime ideal P of S is called strongly prime if $x, y \in G$ and $x+y \in$ P implies that $x \in P$ or $y \in P . S$ is called pseudo-valuation semigroup if every prime ideal of S is strongly prime $[3]$.

The following Lemma is useful restatement of definition of strongly prime ideal in semigroup S.

Lemma 2.5. Let P be a prime ideal of a semigroup with quotient group G. Then P is strongly prime ideal if and only if $-x+P \subseteq P$ for each $x \in G \backslash S$.

Proof. Suppose that I is strongly prime. Letf $x \in G \backslash S$ and $p \in P$ Since $p=(p-x)+x \in P$ and P is strongly prime ideal, we have $(p-x) \in P$ or $x \in P$. Since $x \notin S$ we must have $p-x \in P$. Thus
$-x+P \subseteq P$. To prove opposite implication, assume $-x+P \subseteq P$ whenever $x \in G \backslash S$, and let $a+b \in P$. If $a, b \in S$ there is nothing to prove. Hence we may assume $a \notin S$ so that $-a+P \subseteq P$ and $b=-a+a+b \in P$. T

Theorem 2.6. Let P be an ideal in semigroup S with quotient group G. Then following statements are equivalent.
(1) P is strongly prime;
(2) $G \backslash P$ additive system;
(3) P is prime and is comparable to each (principal) fractional ideal of S;
(4) $P: P$ is valuation semigroup with maximal ideal P;
(5) P is a prime ideal in some valuation oversemigroup of S.

Proof. Clearly (1) and (2) are equivalent. (1) \Rightarrow (3)Suppose that P is strongly prime ideal. Let $x \in G \backslash P$. Then $x+(-x+P) \subseteq P$. Since P is strongly prime, $-x+P \subseteq P$ and hence $P \subseteq x+P \subseteq x+S$. (3) \Rightarrow (2) Let $x, y \in S$. Suppose that $x+y \in P$. Now $x \in S$ implies $P \varsubsetneqq X+S$, So $-x+P \varsubsetneqq S$. Then $y=-x+(x+y) \in-x+P \subseteq S$. Similarly, $x \in S$. But then we get contradiction that either $x \in P$ or $y \in P$ since P is prime. (1) \Rightarrow (4). Suppose that $x \in G \backslash P$. From the proof of $(1) \Rightarrow(3)$, we see that $-x+P \subset P$, and hence $-x \in(P: P)$. From this it easily follows that $P: P$ is a valuation semigroup with P as its maximal ideal. Finally, the implications $(4) \Rightarrow(5)$ and $(5) \Rightarrow$ (1) are obvious.

In the following Theorem we characterize pseudo-valuation semigroup with the maximal ideals

THEOREM 2.7. . Let (S, M) be a semigroup. The following statement are equivalent:
(1) S is pseudo-valuation semigroup
(2) For each pair I, J of ideals of S, either $I \subseteq J$ or $M+J \subseteq M+I$.;
(3) For each pair I, J of ideals of S, either $I \subseteq J$ or $M+J \subseteq I$.;
(4) M is strongly prime.

Proof. (1) \Rightarrow (2) Assume $I \nsubseteq J$. Let $a \in I \backslash J$. For each $b \in J$ we have $a-b \notin S$, so that $-(a-b)+M \subseteq M$ and $M+b \subseteq M+a \subseteq M+I$. It follows that $M+J \subseteq M+I$.
$(2) \Rightarrow$ (3) straightforward.
$(3) \Rightarrow$ (4) Let $a, b \in S$ with $a-b \notin S$. By Lemma 2.5 , this is enough to show that $-(a-b)+M \subseteq M$. Since $a-b \notin S$ we have $(a) \nsubseteq(b)$ whence $M+b \subseteq(a)$ and $-(a-b)+M \subseteq S$. If $-(a-b)+M=S$ then $M=S+(a-b)$ and $a-b \notin S$, This is a contradiction. Hence $-(a-b)+M \subseteq M$. Therefore M is stronly prime ideal
(4) \Rightarrow (1) Let $x \in G, x \notin S$, and let P be a prime ideal. Again ,by Lemma 2.5 , it is enough to show that $-x+P \subseteq P$. Let $p \in P$. Since $P \subseteq M$, we have $-x+p \in M$. Hence $-x+p-x \in M$, whence $2(-x+p)=(-x+p)+(-x+p) \in P$. Since P is prime and $-x+p \in S$, we therefore have $-x+p \in P$.

REFERENCES

[1] D.D.Anderson and David F. Anderson, Multiplicatively closed subsets of Fields, Houston Journal of Mathematics $13(1)(1987), 429-439$.
[2] R.Gilmer, Multiplicative Ideal Theory, Marcel Dekker ${ }_{2} 1988$.
[3] E.G. Hedstrom an E.G. Houston, pseudo-valuation domain, Pacific Journal of Mathematics $75(1)$ (1978), 137-147.
[4] Evan G. Houston, Salah-Eddine Kabbaj,Tomas G. Lucas and Abdeslam Mimouni, emph When is the dual of an ideal a ring, Journal of Algebra 225 (2000), 429-450.
[5] James A. Huckaba and Ira J. Papick, When the dual of an ideal is a ring, manuscripta math. 37 (1982), 67-85.
[6] Lee, D.S. and Park, C.H.,Some remarks on semigroups, Far East J.Math.Sci. ,11(3), (2003), 269-275.
[7] Matsuda R.and Kanemisu M.,Primary ideals and valuation ideals in semigroups, Southeast Asian Bulletin of Mathematics 26(2002), 433-437.
[8] Matsuda R.and Kanemisu M.,On seminormal semigroups, Are.Math., 69 (1997),279-285.
[9] Matsuda R., On Seminormal semigroups and Pesudo-valuation Semigroups, Jp Jounal of Algebra, Number Theory and Applications 1(1) (2001, 25-39.
[10] D.G.Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge Univ. Press,(1968).

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea
E-mail: jylee $\hat{\text { Gul }}$ (san.ac.kr

Department of Mathematics University of Ulsan
Ulsan 680-749, Korea
E-mail: chpark@ulsan.ac.kr

