INTTEGRAL GEOMETRY
ON PRODUCT OF SPHERES II

HONG JAE KANG

1. Introduction and Result

Let G be a Lie group and H a closed subgroup of G. We assume that G has a left invariant Riemannian metric that is also right invariant under elements of H. Then G/H is a homogeneous space with an invariant Riemannian metric. Consider now two submanifolds M and N of G/H, one fixed and the other moving under the action of $g \in G$. We always assume that M and N are in generic positions. This means that the dimension of the intersection $M \cap gN$ is nonnegative for almost all $g \in G$. Let $\text{vol}(M \cap gN)$ be an integral invariant of the submanifold $M \cap gN$. One of the basic problems in integral geometry is to find explicit formulas for integral of $\text{vol}(M \cap gN)$ over G with respect to the invariant measure $d\mu_G(g)$ on G in terms of known integral invariants of M and N. Especially R. Howard [1] obtained a generalized Poincaré formula for Riemannian homogeneous spaces as follows:

Let M and N be submanifolds of G/H with $\dim M + \dim N = \dim(G/H)$. Assume that G is unimodular. Then

\[(1.1) \quad \int_G \| (M \cap gN) \| d\mu_G(g) = \int_{M \times N} \sigma_H(T^\perp_x M, T^\perp_y N) \, d\mu_{M \times N}(x,y),\]

where $\|X\|$ denotes the number of elements in a set X and $\sigma_H(T^\perp_x M, T^\perp_y N)$ is defined by (2.1) in Section 2.
The formula (1.1) holds under the general situation. However, it is difficult to give an explicit description through the concrete computation of $\sigma_H(T_x^1 M, T_y^1 N)$, and only a little is known about it. In this paper, we attempt to explicitly describe this formula for two dimensional submanifolds in the product of unit sphere S^2. More precisely,

Theorem 1.1. Let M and N be submanifolds of $S^2 \times S^2$ of dimension 2. Assume that for almost all $g \in G$, M and gN intersect transversely. For any point $x \in M$ and $y \in N$, ξ_x and η_y denote the unit vector of $T_x M$ and $T_y N$, respectively. Then we have

$$\int_{SO(3) \times SO(3)} \| (M \cap gN) \| \mu_{SO(3) \times SO(3)}(g) = \int_{M \times N} \sigma(\xi, \eta) \mu_{M \times N}(x, y).$$

Here $\sigma(\xi, \eta)$ was introduced by the Gauss hypergeometric function in the Section 3.

2. Preliminaries

Here we shall review the generalized Poincaré formula on Riemannian homogeneous spaces given by R. Howard [1] and recall the Gauss hypergeometric function and the elliptic integrals.

Let E be a finite dimensional real vector space with an inner product, and let V and W be two vector subspaces of E with orthonormal bases v_1, \ldots, v_p and w_1, \ldots, w_q respectively. The angle between subspaces V and W is defined by

$$\sigma(V, W) = \| v_1 \wedge \cdots \wedge v_p \wedge w_1 \wedge \cdots \wedge w_q \|,$$

where

$$\| x_1 \wedge \cdots \wedge x_k \|^2 = |\det \langle x_i, x_j \rangle|.$$

This definition is independent of the choice of orthonormal bases. It is obvious that if $p + q = \dim E$ then

$$\sigma(V, W) = \sigma(V^\perp, W^\perp).$$

Let G be a Lie group and H a closed subgroup of G. We assume that G has a left invariant Riemannian metric that is also invariant under the right actions of elements of H. This metric induces a G-invariant Riemannian metric on G/H. We denote by o the origin of
G/H. If $x, y \in G/H$ and V is a vector subspace of $T_x(G/H)$ and W is a vector subspace of $T_y(G/H)$ then define $\sigma_H(V, W)$ by

$$\sigma_H(V, W) = \int_H \sigma((dg_x)_o^{-1}V, dh_o^{-1}(dg_y)_o^{-1}W) d\mu_H(h)$$

where g_x and g_y are elements of G such that $g_xo = x$ and $g_yo = y$. This definition is independent of the choice of g_x and g_y in G such that $g_xo = x$ and $g_yo = y$.

We list here the basic properties of the Gauss hypergeometric function that are needed in this paper only. For further details see [4].

The Gauss hypergeometric series, convergent for $|z| < 1$, is given by the power series

$$F(a, b, c; z) = \sum_{n=0}^{\infty} \frac{\Gamma(a+n)}{\Gamma(a)} \cdot \frac{\Gamma(b+n)}{\Gamma(b)} \cdot \frac{\Gamma(c+n)}{\Gamma(c+n)} \cdot \frac{z^n}{n!}$$

where Γ is the gamma function. By analytic continuation $F(a, b, c; z)$ can be extended to define a function analytic and single-valued in the complex z plane cut along the positive real axis from 1 to ∞. We remark that above series reduces to a polynomial of degree n in x when a or b is equal to $-n, (n = 0, 1, 2, \cdots)$. The series (2.2) is not defined when c is equal to $-m, (m = 0, 1, 2, \cdots)$, provided a or b is not a negative integer n with $n < m$. The hypergeometric equation

$$z(1-z)\frac{d^2u}{dz^2} + (c - (a + b + 1)z)\frac{du}{dz} - abu = 0$$

has the solution $u = F(a, b, c; z)$.

The six functions $F(a \pm 1, b, c; z)$, $F(a, b \pm 1, c; z)$ and $F(a, b, c \pm 1; z)$ are called contiguous to $F(a, b, c; z)$. Relations between $F(a, b, c; z)$ and any two contiguous functions have been given by Gauss. By repeated application of these relations the function $F(a + m, b + n, c + l; z)$ with integer m, n, l can be expressed as a linear combination of $F(a, b, c; z)$ and one of its contiguous functions with coefficients which are rational functions of a, b, c, z. For examples,

$$azF(a + 1, b + 1, c + 1; z) = c [F(a, b + 1, c; z) - F(a, b, c; z)]$$

$$(c - 1)F(a, b, c - 1; z) = (c - a - 1)F(a, b, c; z) + aF(a + 1, b, c; z).$$
Among the special cases are
\begin{equation}
(1 - z)^t = \int F(-t, b, b; z),
\end{equation}
\begin{equation}
\arcsin z = z F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}; z^2\right).
\end{equation}
Furthermore C. F. Gauss evaluated, for \(\Re(c - a - b) > 0 \),
\begin{equation}
F(a, b, c; 1) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)}.
\end{equation}
In this paper, we may consider only when \(z \) is a real number.
We now recall that the incomplete elliptic integrals of the first and second kind are defined by, for \(0 < k < 1 \),
\begin{equation}
F(\psi, k) = \int_0^\psi \frac{1}{\sqrt{1 - k^2 \sin^2 \theta}} \, d\theta, \quad E(\psi, k) = \int_0^\psi \sqrt{1 - k^2 \sin^2 \theta} \, d\theta,
\end{equation}
respectively. If \(\psi = \pi/2 \) then the integrals are called the complete elliptic integral of the first and second kind, and are denoted by \(K(k) \) and \(E(k) \) or simply \(K \) and \(E \) respectively.

3. Proof of the Theorem 1.1

Let \(S^2 \) be the standard sphere of dimension 2. Throughout this section, to simplify notation, we will regard \(G \) and \(H \) as \(SO(3) \times SO(3) \) and \(SO(2) \times SO(2) \). The special orthogonal group \(SO(3) \) acts transitively on \(S^2 \). The isotropy subgroup of \(SO(3) \) at a point in \(S^2 \) is \(SO(2) \). Thus \(S^2 \times S^2 \) can be realized as a homogeneous space \(G/H \). Let \(\mathfrak{so}(3) \times \mathfrak{so}(3) \) be the Lie algebra of \(G \). Define an inner product on \(\mathfrak{so}(3) \times \mathfrak{so}(3) \) by
\begin{equation}
(X, Y) = -\frac{1}{2} \text{Trace}(XY), \quad (X, Y \in \mathfrak{so}(3) \times \mathfrak{so}(3)).
\end{equation}
We extend this inner product \(\langle \cdot, \cdot \rangle \) on \(\mathfrak{so}(3) \times \mathfrak{so}(3) \) to the left invariant Riemannian metric on \(G \). Then we obtain a bi-invariant Riemannian metric on \(G \). This bi-invariant Riemannian metric on \(G \) induces a \(G \)-invariant Riemannian metric on \(G/H \).
Let M and N be submanifolds of $S^2 \times S^2$ of dimension 2. By the formula (1.1), we have

\[\int_G \mathbb{H}(M \cap gN) \, d\mu_G(g) = \int_{M \times N} \sigma_H(T_x M, T_y N) \, d\mu_{M \times M}(x, y). \]

For any point $x = (x_1, x_2) \in M$,

\[T_x M = T_{(x_1, x_2)} M \subset T_{x_1} S^2 \oplus T_{x_2} S^2. \]

Thus u_x can be realized as an unit vector of $T_x M$ just as follows:

\[u_x = (u_1, u_2) \in T_{x_1} S^2 \oplus T_{x_2} S^2 = \mathbb{R}^2 \times \mathbb{R}^2 \cong \mathbb{R}^4. \]

We here can transport u_x to $(\cos \theta_1, 0, \sin \theta_1, 0)$, since the action of H preserves the length of vectors. Thus we can take

\[(\cos \theta_1, 0, \sin \theta_1, 0), (-\sin \theta_1 \cos \theta_2, \sin \theta_2 \cos \theta_1, \cos \theta_1 \cos \theta_2, \sin \theta_2 \sin \theta_3) \]

as an orthonormal basis of $T_x M$. Similarly we have

\[(\cos \tau_1, 0, \sin \pi_1, 0), (-\sin \tau_1 \cos \tau_2, \sin \tau_2 \cos \tau_1, \cos \tau_1 \cos \tau_2, \sin \tau_2 \sin \tau_3) \]

as an orthonormal basis of $T_y N$.

In this choice of orthonormal bases, we can easily take one. But it is too much variables to calculate the $\sigma_H(\cdot, \cdot)$.

Now let $Gr_2^+(\mathbb{R}^4)$ be an oriented Grassmann manifold as a submanifold of $\wedge_2 \mathbb{R}^4$. We take an orientation on \mathbb{R}^4 such that e_1, e_2, e_3, e_4 is a positive basis of \mathbb{R}^4 and the inner product on $\wedge_2 \mathbb{R}^4$ induced by that on \mathbb{R}^4. Let $*$ be the Hodge star operator on $\wedge_2 \mathbb{R}^4$. Put

\[\wedge_2^+ = \left\{ \xi \in \wedge_2 \mathbb{R}^4 \mid * \xi = \xi \right\}, \quad \wedge_2^- = \left\{ \xi \in \wedge_2 \mathbb{R}^4 \mid * \xi = -\xi \right\}. \]

Then we have an orthogonal direct sum decomposition

\[\wedge_2 \mathbb{R}^4 = \wedge_2^+ \oplus \wedge_2^-. \]
We define orthonormal bases A_1 and B_1 of Λ^2_+ and Λ^2_- by

$$
A_1 = \frac{1}{\sqrt{2}}(e_1 \wedge e_2 + e_3 \wedge e_4), \quad B_1 = \frac{1}{\sqrt{2}}(e_1 \wedge e_2 - e_3 \wedge e_4),
$$

$$
A_2 = \frac{1}{\sqrt{2}}(e_1 \wedge e_3 - e_2 \wedge e_4), \quad B_2 = \frac{1}{\sqrt{2}}(e_1 \wedge e_3 + e_2 \wedge e_4),
$$

$$
A_3 = \frac{1}{\sqrt{2}}(e_1 \wedge e_4 + e_2 \wedge e_3), \quad B_3 = \frac{1}{\sqrt{2}}(e_1 \wedge e_4 - e_2 \wedge e_3).
$$

Then we obtain

$$
\Lambda^2_+ = \text{Span}\{A_1, A_2, A_3\}, \quad \Lambda^2_- = \text{Span}\{B_1, B_2, B_3\}.
$$

By a simple calculation, we have

$$
Gr^o_2(\mathbb{R}^4) = S^2 \left(\frac{1}{\sqrt{2}} \right) \times S^2 \left(\frac{1}{\sqrt{2}} \right).
$$

Hence we can easily take orthonormal bases ξ and η as follows:

$$
\xi = \frac{1}{\sqrt{2}}(\cos \theta_1 A_1 + \sin \theta_1 A_2) + \frac{1}{\sqrt{2}}(\cos \theta_2 B_1 + \sin \theta_2 B_2),
$$

$$
\eta = \frac{1}{\sqrt{2}}(\cos \tau_1 A_1 + \sin \tau_1 A_2) + \frac{1}{\sqrt{2}}(\cos \tau_2 B_1 + \sin \tau_2 B_2),
$$

where $0 \leq \theta_1, \theta_2, \tau_1, \tau_2 \leq \pi$. We can simply write

$$
\sigma_H(T_x M, T_y N) = \sigma_H(\xi, \eta),
$$

since $\sigma_H(T_x M, T_y N)$ is dependent only on ξ and η, that is, θ and τ.

Now we work on the following integral

$$
\sigma_H(\xi, \eta) = \int_H |\xi \wedge k\eta| d\mu_H(h).
$$

We have set, to simplify notation,

$$
\cos \theta_i \cos \tau_i = c_{ii}, \quad \sin \theta_i \sin \tau_i = s_{ii}, \quad (i = 1, 2).
$$

Then we immediately obtain

$$
|\xi \wedge k\eta| = \frac{1}{2} |c_{11} + s_{11} \cos (\alpha + \beta) - c_{22} - s_{22} \cos (\alpha - \beta)|,
$$
since
\[
\eta = \frac{1}{\sqrt{2}} (\cos \tau_1 A_1 + \sin \tau_1 \cos (\alpha + \beta) A_2 + \sin \tau_1 \sin (\alpha + \beta) B_3)
\]
\[
+ \frac{1}{\sqrt{2}} (\cos \tau_2 B_1 + \sin \tau_2 \cos (\alpha - \beta) B_2 + \sin \tau_2 \sin (\alpha - \beta) B_3)
\]
for
\[
h = \begin{bmatrix}
\cos \alpha & -\sin \alpha & 0 & 0 \\
\sin \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & \cos \beta & -\sin \beta \\
0 & 0 & \sin \beta & \cos \beta
\end{bmatrix} \in SO(2) \times SO(2).
\]

Hence we have to evaluate the following integral.
\[
\sigma_H(\xi, \eta) = \int_0^{2\pi} \int_0^{2\pi} \frac{1}{2} \left| c_{11} + s_{11} \cos (\alpha + \beta) \
-c_{22} - s_{22} \cos (\alpha - \beta) \right| d\alpha d\beta,
\]

namely,
\[
\frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} \left| c_{11} - c_{22} + (s_{11} - s_{22}) \cos \alpha \cos \beta \
- (s_{11} + s_{22}) \sin \alpha \sin \beta \right| d\alpha d\beta.
\]

Since \(0 \leq \theta_1, \theta_2, \tau_1, \tau_2 \leq \pi \), we have \(0 \leq s_{11}, s_{22} \leq 1 \) and \(-1 \leq c_{11}, c_{22} \leq 1 \). And put \(a = s_{11} + s_{22}, b = s_{11} - s_{22}, c = c_{11} - c_{22} \) then
\(0 \leq a \leq 2, \quad -1 \leq b \leq 1, \quad -2 \leq c \leq 2, \quad |a| \geq |b|. \)

Having set up these notations, we can now give lemma that is needed to calculate our result.

Lemma 3.1. Let \(S^1(r) \) be a circle with radius \(r \). If \(|a| \leq 1 \) then
\[
\int_{S^1(r)} |ra + x_1| \, d\mu_{S^1(r)}(x) = 4r^2 \left(a \arcsin a + \sqrt{1 - a^2} \right).
\]

We can easily show this lemma and omit its proof.
At first, we shall prove the case where \(c = 0 \).
In this case, we will assume that \(a = 0 \). Then we have \(b = 0 \) since \(s_{11} = s_{22} = 0 \). Therefore we have
\[
\sigma_H(\xi, \eta) = 0.
\]

We suppose that \(a > 0 \). Then we have
\[
\sigma_H(\xi, \eta) = \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} \left| \sqrt{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha \cos \beta} \right| d\beta d\alpha
\]
\[
= 2 \int_0^{2\pi} \sqrt{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha} d\alpha
\]
\[
= 8a \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \alpha} \, d\alpha \quad \text{\{put } k := \sqrt{1 - (b/a)^2} \text{\}\}}
\]
\[
= 8a \text{E}(k).
\]

Now we shall prove the case where \(c \neq 0 \).

Case I The case where \(0 < |b| < a < |c| \).

In this case, we shall compute the following:
\[
\sigma_H(\xi, \eta) = \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} \left| c + b \cos \alpha \cos \beta - a \sin \alpha \sin \beta \right| d\beta d\alpha
\]
\[
= \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} \left| c - \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha} \sin(\beta + \phi) \right| d\beta d\alpha.
\]

Here if \(a \neq |b| \) then we have \(\sin^2 \alpha \leq \frac{c^2 - b^2}{a^2 - b^2} \), since \(c^2 \geq a^2 \). Hence we have \(|c| \geq \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha} \), for all \(\alpha \in [0, 2\pi] \). Therefore we obtain
\[
\int_0^{2\pi} \left| c - \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha} \sin(\beta + \phi) \right| d\beta = \int_0^{2\pi} |c| d\beta = 2\pi |c|.
\]

If \(a = |b| \) then we have
\[
\int_0^{2\pi} |c - a \sin(\beta + \phi)| \, d\beta = 2\pi |c|.
\]

In this case, from (3.2) and (3.3), we immediately obtain
\[
\sigma_H(\xi, \eta) = \frac{1}{2} \int_0^{2\pi} 2\pi |c| \, d\alpha = 2\pi^2 |c|.
\]
Case II. The case where $0 < |c| \leq |b| \leq a$.

If $a = |b|$ then, by Lemma 3.1, we have

$$
\sigma_H(\xi, \eta) = \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} |c - a \sin(\beta + \phi)| d\beta d\alpha
$$

$$
= \frac{1}{2} \int_0^{2\pi} \left(4c \arcsin \left(\frac{c}{a} \right) + 4\sqrt{a^2 - c^2} \right) d\alpha
$$

(3.4)

$$
= 4\pi c \arcsin \left(\frac{c}{a} \right) + 4\pi \sqrt{a^2 - c^2}.
$$

Here if $a \neq |b|$ then we have $\sin^2 \alpha \geq \frac{c^2 - b^2}{a^2 - b^2}$, since $c^2 < a^2$. Hence we have $|c| \leq \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}$, for all $\alpha \in [0, 2\pi]$. Therefore, by Lemma 3.1, we get

$$
(3.5) \int_0^{2\pi} \left| c - \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha} \sin(\beta + \phi) \right| d\beta
$$

$$
= 4c \arcsin \left(\frac{c}{\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}} \right) + 4\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha - c^2}.
$$

Let us integrate on $[0, 2\pi]$ both term of (3.5). The integral of the second part of the right-hand side of (3.5) gives

$$
\int_0^{2\pi} \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha - c^2} d\alpha
$$

$$
= \int_0^{2\pi} \sqrt{(a^2 - c^2) - (a^2 - b^2) \cos^2 \alpha} d\alpha
$$

(3.6)

$$
= 4\sqrt{a^2 - c^2} E \left(\sqrt{\frac{a^2 - b^2}{a^2 - c^2}} \right).
$$

Now we compute the first part of the right-hand side of (3.5). To do this, we prepare the following lemma and formulas (3.7) and (3.8).

Lemma 3.2. For integer m, we have

$$
\int \sin^{2m} x \, dx = - \cos x \, F \left(\frac{1}{2}, \frac{1}{2} - m, \frac{3}{2}; \cos^2 x \right).
$$
We can easily show the above lemma, using the binomial theorem,
the details are left to the reader.
From Lemma 3.2, it is obvious that

\[
(3.7) \quad \int_0^{\pi/2} \sin^{2m} x \, dx = \frac{(2m - 1)!!}{(2m)!!} \cdot \frac{\pi}{2}.
\]

where

\[
m!! = \begin{cases}
m(m - 2) \cdots 4 \cdot 2, & m : \text{even}; \\
m(m - 2) \cdots 3 \cdot 1, & m : \text{odd}.
\end{cases}
\]

And, by a simple calculation and the binomial theorem, we obtain the
following equality:

\[
(3.8) \quad \left(\frac{1}{1 + k^2 \sin^2 x} \right)^{2n+1} = \sum_{m=0}^{\infty} \frac{(2n + 2m - 1)!!}{(2m)!!(2n - 1)!!} (-k^2)^m \sin^{2m} x.
\]

From the Taylor expansion of \(\arcsin f(x) \) and (3.8), (3.7), we have

\[
\int_0^{2\pi} \arcsin \left(\frac{c}{\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}} \right) \, d\alpha \\
= \sum_{n=0}^{\infty} \frac{(2n - 1)!!}{(2n)!!} \frac{1}{2n + 1} \int_0^{2\pi} \theta^{2n+1} \left(\frac{1}{\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}} \right)^{2n+1} \, d\alpha \\
= \sum_{n=0}^{\infty} \frac{(2n - 1)!!}{(2n)!!} \frac{1}{2n + 1} \left| b \right|^{2n+1} \int_0^{2\pi} \left(\frac{1}{1 + k^2 \sin^2 \alpha} \right)^{2n+1} \, d\alpha \\
= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(2n - 1)!!(2n + 2m - 1)!!}{(2n + 1)!!(2m)!!(2n - 1)!!} \left(\frac{c}{\left| b \right|} \right)^{2n+1} (-k^2)^m \int_0^{2\pi} \sin^{2m} \alpha \, d\alpha \\
= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(2n - 1)!!(2n + 2m - 1)!!}{(2n + 1)!!(2m)!!(2n - 1)!!} \left(\frac{c}{\left| b \right|} \right)^{2n+1} (-k^2)^m \frac{2\sqrt{\pi} \Gamma \left(m + \frac{1}{2} \right) \Gamma \left(n + m + \frac{1}{2} \right) (-k^2)^m}{m! \Gamma \left(n + \frac{1}{2} \right) n!} \frac{2\pi}{m!} \\
= 2\pi \sum_{n=0}^{\infty} \frac{(2n - 1)!!}{(2n)!!} \frac{1}{2n + 1} \left(\frac{c}{\left| b \right|} \right)^{2n+1} F \left(\frac{1}{2}, n + \frac{1}{2}; 1; -k^2 \right)
\]
where the step going from the second to third line used putting $k^2 = (a^2 - b^2)/b^2$, and the fifth to sixth line used

$$(2n + 2m - 1)!! = \frac{2^{n+m}}{\sqrt{\pi}} \Gamma\left(n + m + \frac{1}{2}\right).$$

Summarizing, we obtain

$$\sigma_H(\xi, \eta) = 4\pi c \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{1}{2n+1} \left(\frac{c}{|b|}\right)^{2n+1} \times F\left(\frac{1}{2}, n + \frac{1}{2}, 1; \frac{b^2 - a^2}{b^2}\right) + 8\sqrt{a^2 - c^2}E\left(\frac{a^2 - b^2}{\sqrt{a^2 - c^2}}\right).$$

Remark 3.3. It is trivial that the case where $a = |b|$ in just above equality goes to (3.4).

Case III. The case where $0 \leq |b| \leq |c| \leq a$.

In particular, if $0 < |b| = |c| = a$ then we have

$$\sigma_H(\xi, \eta) = \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{2\pi} |c - a \sin(\beta + \phi)| \, d\beta \, d\alpha.$$

Since $|c/a| = 1$, we obtain

$$\sigma_H(\xi, \eta) = \frac{1}{2} \int_{0}^{2\pi} 2\pi |c| \, d\alpha = 2\pi^2 |c| = 2\pi^2 a.$$

It is sufficient to calculate the following:

$$\sigma_H(\xi, \eta) = \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{2\pi} \left|c - \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha \sin(\beta + \phi)}\right| \, d\beta \, d\alpha,$$

where the case is $|b| \leq |c| < a$ or $|b| < |c| \leq a$.

In these cases, we immediately know that $0 \leq \frac{c^2 - b^2}{a^2 - b^2} \leq 1$. The inequality

$$|c| \geq \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}$$
is satisfied whenever \(0 \leq \alpha \leq \theta, \pi - \theta \leq \alpha \leq \pi + \theta, \) \(2\pi - \theta \leq \alpha \leq 2\pi,\)
where
\[
\theta = \arcsin \sqrt{c^2 - b^2 \over a^2 - b^2}.
\]
Then we obtain
\[
\int_0^{2\pi} \left| c - \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha \sin(\beta + \phi)} \right| \, d\beta = 2\pi |c|.
\]
Therefore we have
\[
\int_0^{2\pi} \left| c - \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha \sin(\beta + \phi)} \right| \, d\beta = 2\pi |c| \theta
\]
On the other hand, the inequality
\[
|c| \leq \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}
\]
holds for \(\theta \leq \alpha \leq \pi - \theta, \pi + \theta \leq \alpha \leq 2\pi - \theta.\) Then, by Lemma 3.1, we have
\[
\int_0^{2\pi} \left| c - \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha \sin(\beta + \phi)} \right| \, d\beta
\]
\[
= 4c \arcsin \left(\frac{c}{\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}} \right) + 4\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha - c^2}.
\]
We first integrate the second part of right-hand side of (3.11) on \(|\theta, \pi - \theta|\). Then we have
\[
\int_{\theta}^{\pi - \theta} \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha - c^2} \, d\alpha
\]
\[
= \int_{\theta}^{\pi - \theta} \sqrt{(a^2 - b^2) \sin^2 \alpha - (c^2 - b^2)} \, d\alpha.
\]
Here we put \((a^2 - b^2) \sin^2 \alpha - (c^2 - b^2) = (a^2 - c^2) \sin^2 \psi.\) Then, using the coordinate transformation, above integral is as follows:
\[
2(a^2 - c^2) \int_0^{\pi/2} \frac{1 - \cos^2 \psi}{\sqrt{(a^2 - c^2) \sin^2 \psi + (c^2 - b^2)}} \, d\psi.
\]
Integral geometry on product of spheres II

From

\[\int_0^{\pi/2} \frac{d\psi}{\sqrt{(a^2 - c^2) \sin^2 \psi + (c^2 - b^2)}} = \frac{1}{\sqrt{a^2 - b^2}} \int_0^{\pi/2} \frac{d\psi}{\sqrt{1 - \sin^2 \theta \cos^2 \psi}} = \frac{1}{\sqrt{a^2 - b^2}} K(\sin \theta), \]

and, using putting \(\cos \psi = t, \)

\[\int_0^{\pi/2} \frac{\cos^2 \psi \, d\psi}{\sqrt{(a^2 - c^2) \sin^2 \psi + (c^2 - b^2)}} = \int_0^1 \frac{t^2 \, dt}{\sqrt{(a^2 - b^2) - (a^2 - c^2) t^2 \sqrt{1 - t^2}}} = \frac{1}{\sqrt{a^2 - b^2}} \int_0^1 \frac{t^2}{\sqrt{1 - \sin^2 \theta t^2} \sqrt{1 - t^2}} \, dt = -\frac{\sqrt{a^2 - b^2}}{a^2 - c^2} \left\{ E(\sin \theta) - K(\sin \theta) \right\}, \]

we know that (3.12) becomes the following:

(3.13) \[2\sqrt{a^2 - b^2} \left\{ E(\sin \theta) - \frac{c^2 - b^2}{a^2 - b^2} K(\sin \theta) \right\}. \]

Next we compute the first part of right-hand side of (3.11) on \([\theta, \pi - \theta].\)

Since

(3.14) \[\int_{\theta}^{\pi - \theta} \sin^{2m} \alpha \, d\alpha = 2 \cos \theta F \left(\frac{1}{2}, \frac{1}{2} - m, \frac{3}{2}; \cos^2 \theta \right), \]
we have

\[
\int_0^{\pi-\theta} \arcsin \left(\frac{c}{\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}} \right) \, d\alpha \\
= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(2n-1)!!(2n+2m-1)!!}{(2n)!!(2n+1)(2m)!!(2n-1)!!} \left(\frac{c}{|b|} \right)^{2n+1} (-k^2)^m \\
\times \int_0^{\pi-\theta} \sin^{2m} \alpha \, d\alpha \\
= 2 \cos \theta \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{1}{2n+1} \left(\frac{c}{|b|} \right)^{2n+1} \\
\times \sum_{m=0}^{\infty} \frac{(2n+2m-1)!!}{(2m)!!(2n-1)!!} (-k)^m F \left(\frac{1}{2}, \frac{1}{2} - m, \frac{3}{2}; \cos^2 \theta \right).
\]

Summarizing, we obtain

\[
\sigma_H(\xi, \eta) = 4\pi |c| \theta + 4\sqrt{a^2 - b^2} \left\{ E(\sin \theta) - \frac{c^2 - b^2}{a^2 - b^2} K(\sin \theta) \right\} + 8c \cos \theta \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{1}{2n+1} \left(\frac{c}{|b|} \right)^{2n+1} \\
\times \sum_{m=0}^{\infty} \frac{(2n+2m-1)!!}{(2m)!!(2n-1)!!} (-k)^m F \left(\frac{1}{2}, \frac{1}{2} - m, \frac{3}{2}; \cos^2 \theta \right).
\]

These equalities bring the proof to a conclusion.

Last of all we here give our result in the following table:
<table>
<thead>
<tr>
<th>a, b, c</th>
<th>$\sigma_H(\xi, \eta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq</td>
<td>b</td>
</tr>
<tr>
<td>$0 \leq</td>
<td>c</td>
</tr>
<tr>
<td>$0 <</td>
<td>b</td>
</tr>
<tr>
<td>$0 \leq</td>
<td>b</td>
</tr>
</tbody>
</table>

where $\theta := \arcsin \sqrt{\frac{c^2-b^2}{a^2-b^2}}$.

REFERENCES

Department of Mathematics Education
Chinju National University of Education
Jinju, 660-756 Korea
E-mail: kanghai@cue.ac.kr