DOI QR코드

DOI QR Code

APPLICATIONS OF SERICITE IN WASTEWATER TREATMENT : REMOVAL OF Cu(II) AND Pb(II) FROM AQUEOUS SOLUTIONS

  • Tiwari, Diwakar (Department of Environmental Engineering, Kwandong University) ;
  • Kim, Hyoung-Uk (Department of Environmental Engineering, Kwandong University) ;
  • Lee, Seung-Mok (Department of Environmental Engineering, Kwandong University)
  • Published : 2006.12.31

Abstract

The aim of this study is to assess the applicability of sericite in wastewater treatment particularly the removal of two important heavy metal toxic ions viz., Cu(II) and Pb(II) from aqueous solutions. The batch type experiments showed that sericite is found to be one of useful natural sorbent for the removal of these two cations from aqueous solutions and it is also to be observed that with the increase in sorptive concentration amount of metal uptake increases and the concentration dependence data obtained are fitted well for the Langmuir adsorption isotherm rather than Freundlich adsorption model. Further, the Langmuir monolayer adsorption capacity is found to be $1.674\;mg\;g^{-1}$ for Cu(II) and $4.697\;mg\;g^{-1}$ for Pb(II). Kinetic studies enabled, an apparent equilibria can be achieved between soild/solution interface within ca 10 mins for Cu(II) and ca 90 mins for Pb(II). Moreover, the removal behavior of sericite for these two metal ions is greatly influenced by solution pH.

Keywords

References

  1. Kadirvelu, K. and Namasivayam, C., 'Activated carbon from coconut coirpith as metal adsorbents: adsorption of Cd(II) from aqueous solution,' Adv. Environ. Res., 7, 471-478 (2003) https://doi.org/10.1016/S1093-0191(02)00018-7
  2. Chiron, N., Guilet, R. and Deydier, E., 'Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models,' Wat. Res., 37, 3079-3086 (2003) https://doi.org/10.1016/S0043-1354(03)00156-8
  3. Kinniburgh, D. G., Jackson, M. L. and Syers, J. K., 'Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum,' Soil Sci. Soc. Am. J., 40, 796-799 (1976) https://doi.org/10.2136/sssaj1976.03615995004000050047x
  4. Schindler, P. W., Furst, B., Dick, B. and Wolf, P. U., 'Ligand properties of surface silanol groups. 1. Surface complex formation with $Fe^{3+}$, $Cu^{2+}$, $Cd{2+}$, and $Pb^{2+}$,' J. Colloid & Interface Sci., 55, 469-475 (1976) https://doi.org/10.1016/0021-9797(76)90057-6
  5. Benjamin, M. M., 'Adsorption and surface precipitation of metals on amorphous iron oxyhydroxide,' Eviron. Sci. Technol.. 17, 686-692 (1983) https://doi.org/10.1021/es00117a012
  6. Lee, S. H., Lee, K. H. and Park, J. B., 'Pb(II) and Cr(VI) removal using Fe-loaded zeolite,' Environ. Eng. Res., 9(6), 249-255 (2004) https://doi.org/10.4491/eer.2004.9.6.249
  7. Davis, J. A. and Leckie, J. O., 'Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides,' Environ. Sci. Technol., 12, 1309-1315 (1978) https://doi.org/10.1021/es60147a006
  8. Benjamin, M. M. and Leckie, J. O., 'Effects of complexation by CI, $SO_4$, $S_2O_3$ on adsorption behavior of Cd on oxide surfaces,' Environ. Sci. Technol., 16(3), 162-170 (1982) https://doi.org/10.1021/es00097a723
  9. Elliot, H. A. and Huang, C. P., 'Adsorption of some copper(ll)-amino acid complexes at the solid-solution interface. Effect of ligand and surface hydrophobicity,' Environ. Sci. Technol., 14, 87-93 (1980) https://doi.org/10.1021/es60161a003
  10. Bhattacharyya, K. G. and Sengupta, S., 'Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution,' Sep. Puri. Technol., 50(3), 388-397 (2006) https://doi.org/10.1016/j.seppur.2005.12.014
  11. Qiao, L. and Ho, G., 'The effect of clay amendment on speciation of heavy metals in sewage sludge,' Wat. Sci. Technol., 34(7-8), 413-420 (1996)
  12. Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C. and Mentasti, E., 'Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances,' Wat. Res., 37(7), 1619-1627 (2003) https://doi.org/10.1016/S0043-1354(02)00524-9
  13. Lee, C. K., Kim, H. S. and Kwon, J. H., 'The removal of heavy metals using hydroxyapatite,' Environ. Eng. Res., 10(5), 205-212 (2005) https://doi.org/10.4491/eer.2005.10.5.205
  14. Potgieter, J. H., Potgieter-Vermaak, S. S. and Kalibantonga, P. D., 'Heavy metals removal from solution by palygorskite clay,' Min. Engg, 19(5), 463-470 (2006) https://doi.org/10.1016/j.mineng.2005.07.004
  15. Saprykin, A. V. and Vizhin, V. V., 'Unusual dependence of Hg adsorption by montmorillonite on pH at small constrains of the metal,' Fresenius Ennviron. Bull., 3, 207-211 (1994)
  16. Hizal, J. and Apak, R. 'Modeling of copper(ll) and lead(ll) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid,' J. Colloid & Interface Sci,. 295(1), 1-13 (2006) https://doi.org/10.1016/j.jcis.2005.08.005
  17. Vim, S. B., 'Surface complexation models for copper(II) adsorption on kaolinite,' Environ. Eng. Res.. 8(2), 91-97 (2003) https://doi.org/10.4491/eer.2003.8.2.091
  18. Kim, M. S. and Chung, J. G., 'Removal of copper(II) ion by kaolin in aqueous solutions,' Environ. Eng. Res.. 7(1), 49-57 (2002) https://doi.org/10.4491/eer.2002.7.1.049
  19. Tanabe, K., Catalysis Science and Technology, SpringerVerlag, New York (1981)
  20. Apak, R., Environmental Chern. Lecture Notes, I. U. Engineering Fac., Chemistry Dept., Analytical Chern. Div., Avcilar, Istanbul, (1998)
  21. Robinson, P., Woodlands Clay-Sericite Mica in a Clay-Like State (1984)
  22. Tokubo, K., 'Application of powders to cosmetics-their properties and reform of their function,' Fragrance J., 80, 60-66 (1986)
  23. Mishra, S. P. and Tiwari, D., 'Biosorptive behavior of some dead biomasses in the removal of Sr(85+89) from aqueous solutions', J. Radioanal. Nucl. Chem., 251(1), 47-53 (2002) https://doi.org/10.1023/A:1015090110293
  24. Scott, J. A., Karanjkar, A. M. and Rowe, D. L., 'Biofilrn covered granular activated carbon for decontamination of streams containing heavy metals and organic chemicals,' Min. Engg., 8, 221 (1995) https://doi.org/10.1016/0892-6875(94)00115-S
  25. Kim, M. S., Hong, S. C. and Chung, J. G., 'Adsorption of Pb(III) on metal oxide paricles containing aluminum and titanium in aqueous solutions,' Environ. Eng. Res., 10(2), 45-53 (2005) https://doi.org/10.4491/eer.2005.10.2.045
  26. Lalvani, S. B., Wiltowski, T., Hubner, A., Weston, A. and Mandich, N., 'Removal of hexavalent chromium and metal cations by a selective and novel carbon adsorbent,' Carbon, 36(7-8), 1219-1226 (1998) https://doi.org/10.1016/S0008-6223(98)00102-X
  27. Mishra, S. P., Dubey, S. S. and Tiwari, D., 'Inorganic particulates in removal of heavy metal toxic ions IX. Rapid and efficient removal of Hg(II) by hydrous manganese and tin oxides,' J. Colloid & Interface Sci., 279, 61-67 (2004)
  28. Machida, M., Aikawa, M. and Tatsumoto, H., 'Prediction of simultaneous adsorption of Cu(II) and Pb(II) onto activated carbon by conventional Langmuir type equation,' J. Hazardous Mat., 120(1-3), 271-275 (2005) https://doi.org/10.1016/j.jhazmat.2004.12.034
  29. Kikuchi, Y., Qian, Q., Machida, M. and Tatsumoto, H. 'Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution,' Carbon, 44(2), 195-202 (2006) https://doi.org/10.1016/j.carbon.2005.07.040
  30. Hui, K. S., Chao, C. Y. H. and Kot, S. C., 'Removal of mixed heavy metal ions in waste water by zeolite 4A and residual products from recycled coal fly ash,' J. Haz. Mat., B127, 89-101 (2005)
  31. Erdem, E., Jkarapinar, N. and Donat, R., 'The removal of heavy metal cations by natural zeolites,' J. Colloids & Interface Sci., 280(2), 309-314 (2004) https://doi.org/10.1016/j.jcis.2004.08.028
  32. Gupta, V. K., Saini, V. K. and Jain, N., 'Adsorption of As(III) from aqueous solutions by iron oxide-coated sand,' J. Colloid & Interface Sci., 288, 55-60 (2005) https://doi.org/10.1016/j.jcis.2005.02.054
  33. Sparks, D. L., Environmental Soil Chemistry, Academic Press, San Diego, pp. 99-139 (1995)

Cited by

  1. Biosorption of Heavy Metals from Acid Mine Drainage by Modified Sericite and Microalgae Hybrid System vol.226, pp.6, 2015, https://doi.org/10.1007/s11270-015-2433-3