DOI QR코드

DOI QR Code

CHARACTERIZATION OF RECALCITRANT DISSOLVED ORGANIC MATTER IN LAKE AND INFLOW RIVER WATERS

  • Kim, Yong-Hwan (Department of Health Environment, Daegu Haany University) ;
  • Lee, Shun-Hwa (Department of Environmental Engineering, Yeungnam University) ;
  • Kim, Jung-Ho (Department of Health Environment, Daegu Haany University) ;
  • Park, Jong-Woong (Department of Health Environment, Daegu Haany University) ;
  • Choi, Kwang-Soon (Water Resources Research Institute, Korea Water Resources Coporation)
  • Published : 2006.08.31

Abstract

The hydrophilic or hydrophobic characteristics of dissolved organic matter (DOM) from different origins in lake and river waters were investigated using spectrometric and chromatographic analyses of water samples. DOM in a deep, mesotrophic lake (Lake Unmun) was fractionated using three types of ion exchange resins and classified into aquatic humic substances (AHS), hydrophobic neutrals (HoN), hydrophilic acids (HiA), hydrophilic neutrals (HiN), and bases (BaS). The DOM fractionation provided insight into the understanding of the nature of heterogeneous DOM molecules present in different water sources. The UV/DOC ratios were determined for samples from the influent river and lake waters during DOM fractionation and incubation. AHS prevailed over DOM in the lake and river waters. After biodegradation, the relative contribution of AHS in the total DOM became more significant. It indicates that the AHS fraction would increase while water stay long time in the lake.

Keywords

References

  1. Imai, A., Fukushima, T., Matsushige, K., Kim, Y. H., Choi, K., 'Characterization of dissolved organic matter in effluents from wastewater treatment plants,' Water Res .. 36, 859-870 (2002) https://doi.org/10.1016/S0043-1354(01)00283-4
  2. Choi, K., Kim, B., Imai, A. and Matsushuge, K., 'Vertical distribution and fractionation of dissolved organic carbon in a deep Korea reservoir, Lake Soyang,' Arch. Hydrobiol, 155(2), 333-352 (2002) https://doi.org/10.1127/archiv-hydrobiol/155/2002/333
  3. Perdue, E. M. and Gjessing, E. T., 'Introduction. In Organic Acids in Aquatic Ecosystems', E. M. Perdue and E. T. Gjessing (eds.), 1-3, John Wiley & Sons, Chichester ( 1990)
  4. Patricia A. Maurice, Michael J. Pullin, Stephen E. Cabaniss, Qunhui Zhou, Ksenija Namjesnik -Dejanovic, George R. Aiken, 'A comparison of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates,' Water Res., 36, 2357-2371 (2002) https://doi.org/10.1016/S0043-1354(01)00442-0
  5. Kaplan and Batt, 'Microbial heterotrophic utilization of dissolved organic matter in a piedmont stream,' Freshwater Bioi., 13, 363-377 (1983) https://doi.org/10.1111/j.1365-2427.1983.tb00686.x
  6. Meyer, J. L., R. T. Edwards, and R. Risley, 'Bacterial growth on dissolved organic carbon from a blackwater river,' Microb. Ecol., 13, 13-29 (1987) https://doi.org/10.1007/BF02014960
  7. Wallis, P. M., and T. I. L, 'Organic biogeochemistry of groundwater at a mountain coal mine.' Geomicrobiol., 3, 49-78 (1983) https://doi.org/10.1080/01490458309377783
  8. Wetzel, R. G., 'Gradient - dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems,' Hydrobiologia., 229, 181-198 (1992) https://doi.org/10.1007/BF00007000
  9. Ebis, S., 'Estimation of total pollutant loading by all influent rivers into Lake Kasumigaura,' Res. Rep. Natl. Inst. Environ. Stud., Jpn., 50, 41-58 (1984)
  10. Kim, Y. H., Lee, S. H., Imai, A., Matsushige, K., 'Characterization of dissolved organic matter in a shallow eutrophic lake and inflow waters,' Environ. Eng. Res., 7(2), 93-101 (2002) https://doi.org/10.4491/eer.2002.7.2.093
  11. Imai, A., Matsushige, K., Nagai, T., 'Trihalomethane formation potential of dissolved organic matter in a shallow eutrophic lake,' Water Res., 37, 4284-4294 (2003) https://doi.org/10.1016/S0043-1354(03)00310-5
  12. Kwon, B., Lee, S., Cho, J., Ahn, H., Lee, D. and Shin, H. S., 'Biodegradability, DBP Formation, and Membrane Fouling Potential of Natural Organic Matter: Characterization and Controllability,' Environ. Sci. & Technol. (2005)
  13. Thurman, E. M., 'Organic geochemistry of natural waters', Martinus Nijhoff/Dr W.Junk Pub., Dordrecht/Boston/Lancaster (1985)
  14. Aiken G. R., 'Isolation and concentration techniques for aquatic humic substances. In Humic Substances in Soil, Sediment, and Water (Edited by Aiken G. R., McKnight D. M., Wershaw R. L. and MacCarthy P.),' Wiley, New York, 363-386 (1985)
  15. Leenheer, J, A., 'Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters,' Environ. Sci. Technol, 15, 578-587 (1981) https://doi.org/10.1021/es00087a010
  16. Malcolm, R. L., Aiken, G. R., Bowles, E. C. and Malcolm, J. D., 'Isolation of fulvic and humic acids from the Suwannee River. In Humic Substances in the Suwannee River, Georgia: Interactions, Properties, and Proposed Structures,' R. C. Averett, J. A. Leenheer, D. M. McKnight and K. A. Thorn (eds.), 23-35. Open-file Report 87-557, Us. Geological Survey, Denver (1989)
  17. Thurman, E. M. and Malcolm, R. L., 'Preparative isolation of aquatic humic substances,' Environ. Sci. Technol., 15, 463-466 (1981) https://doi.org/10.1021/es00086a012
  18. Kim, Y. H., Lee, S. H., Imai, A., Matsushige, K., 'Characteristics of Dissolved Organic Matter in Lake Unmun,' J. of JSWE, 26 (12), 861-867 (2003)
  19. Choi, K., Kim, B., Lee, U. H., 'Characteristies of Dissolved Organic Carbon in Three Layers of a Deep Reservoir, Lake Soyng, Korea,' Internal. Rev. Hydrobial., 86, 63-76 (2001) https://doi.org/10.1002/1522-2632(200101)86:1<63::AID-IROH63>3.0.CO;2-X
  20. Fukushima, T., Park, J. C., Imai, A. and Matsushige, K., 'Dissolved organic carbon in a eutrophic lake; dynamics, biodegradability and origin,' Aquatic Sci., 58(2), 139-157 (1996) https://doi.org/10.1007/BF00877112
  21. Chin, Y., Aiken, G & O'Loughlin, E., 'Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances,' Environ. Sci. Technol., 28, 1853-1858 (1994) https://doi.org/10.1021/es00060a015
  22. O 'Loughlin, E. and Chin, Y. P., 'Effect of detector wavelength on the determination of the molecular weigh of humic substances by high-pressure size exclusion chromatography,' Water Res. 35(1), 333-338 (2001) https://doi.org/10.1016/S0043-1354(00)00228-1
  23. Specht, C. H., Kumke, M. U. and Frimmel, F. H., 'Characterization of NOM adsorption to clay minerals by size exclusion chromatography,' Water Res., 34(16), 4063-4069 (2000) https://doi.org/10.1016/S0043-1354(00)00148-2
  24. Nihon-Kagaukai, 'Structure of organic compounds,' In Shin-Jikken-Kagaku-Kouza, Maruzen, Tokyo, 13 (1977)
  25. Tambo, N. and Kamei, T., 'Evaluation of extent of humic-substance removal by coagulation. In Aquatic Humic Substances : Influence on Fate and Treatment of Pollutants,' I. H. Suffet and P. MacCarthy (eds.), American Chemical Society, Washington, DC, 453-472 ( 1989)
  26. APHA, AWW A, and WEF, 'Standard Methods for the Examination of Water and Wastewater,' 18th Ed. (1992)
  27. Zumstein J. and Buffle, J., 'Circulation of pedogenic and aquagenic organic matter in a eutrophic lake,' Water Res., 23, 229-239 ( 1989) https://doi.org/10.1016/0043-1354(89)90047-X
  28. McKnight, D. M., Andrews, E. D., Sqaulding, S. A. and Aiken G. R., 'Aquatic fulvic acids in algal-rich Antarctic ponds,' Limnol. Oceanogr., 39, 1972-1979 (1994) https://doi.org/10.4319/lo.1994.39.8.1972
  29. Geller, A., 'Comparison of mechanisms enhancing biodegradability of refractory lake water constituents,' Limnol. Oceanogr., 31, 755-764 (1986) https://doi.org/10.4319/lo.1986.31.4.0755
  30. Costas, P., Gayle, N., Vernon, L. S., Chris, H., Shoeleh, A., Ronald, B., 'Characterization of Natural Organic Matter using high performance size exclusion chromatography,' Environ. Sci. Technol., 33, 2807-2813 (1999) https://doi.org/10.1021/es9901314
  31. Thurman, E, M., Wershaw, R. L., Malcolm, R. L., and Pinckney, D. J., 'Molecular size of aquatic humic substances,' Org. Geochem., 4, 27-35 (1992) https://doi.org/10.1016/0146-6380(82)90005-5

Cited by

  1. Profiling Olive Oil Mill Wastewater by Resin Fractionation: Effect of Acid Cracking, Coagulation, Electrocoagulation, and Fenton's Reagent vol.42, pp.10, 2014, https://doi.org/10.1002/clen.201300643
  2. UV fluorescence, FTIR, and GC-MS analyses and resin fractionation procedures as indicators of the chemical treatability of olive mill wastewater vol.57, pp.6, 2006, https://doi.org/10.1080/19443994.2014.992979
  3. Effects of treatment on the characterization of organic matter in wastewater: a review on size distribution and structural fractionation vol.82, pp.5, 2006, https://doi.org/10.2166/wst.2020.403
  4. Characterizing Dissolved Organic Matter Across a Riparian Soil-Water Interface: Preliminary Insights from a Molecular Level Perspective vol.5, pp.5, 2006, https://doi.org/10.1021/acsearthspacechem.1c00029