DOI QR코드

DOI QR Code

INORGANIC AND BIO-MATERIALS IN THE REMOVAL/SPECIATION OF RADIOCESIUM AND RADIOSTRONTIUM : AN OVERVIEW

  • Tiwari, Diwakar (Department of Environmental Engineering, Kwandong University) ;
  • Prasad, S.K. (Department of Chemistry, National Institute of Technology) ;
  • Yang, Jae-Kyu (Department of Environmental Engineering, Kwandong University) ;
  • Choi, Bong-Jong (Department of Environmental Engineering, Kwandong University) ;
  • Lee, Seung-Mok (Department of Environmental Engineering, Kwandong University)
  • Published : 2006.04.30

Abstract

Cesium and strontium are two important fission products and the removal/speciation of these two cations with several inorganic/bio-materials is an interesting topic to discuss. It is to be noted that inorganic materials are found to be fairly effective and efficient in the removal/speciation of these cations. Moreover, these solids are to be found promising as they show fairly good radiation and temperature stability. Hence, they play an important role in the radioactive waste management studies. However, various studies reveal that in addition to inorganic materials various biosorbents can also be employed in the removal/speciation of these ions. But the radiation and temperature stability of these bio-sorbents and dead biomasses are still the topic lying among the researchers to be investigated.

Keywords

References

  1. Our Common Future, World Commission on Environment and Development, New York, Oxford University Press, (1987)
  2. Seitz, R., 'Assessing wastes from fuel chains of electricity generation finding common ground,' IAEA Bulletin, 41, 35-42 (1999)
  3. Kaminski, M. D., 'Engineering product storage under the advanced fuel cycle initiative. Part I. An iterative thermal transport modeling scheme for high-heat-generating radioactive storage forms,' J. Nucl. Mat., 347(1-2), 94103 (2005) https://doi.org/10.1016/j.jnucmat.2005.06.026
  4. Kaminski, M. D., 'Engineering product storage under the advanced fuel cycle initiative. Part II. : Conceptual storage scenarios,' J. Nucl. Mat., 347(1-2), 104-110 (2005) https://doi.org/10.1016/j.jnucmat.2005.06.026
  5. US Department of Energy, Report to Congress on Advanced Fuel Cycle Initiative: The Future Path for Advanced Spent Fuel Treatment and Transmutation Research, Office of Science and Technology, January (2003)
  6. US Nuclear Regulatory Commission. Low-Level Waste Licensing Branch Technical Position on Waste Form : Rev. 1 (1991)
  7. Kim, J. Y., Kim, C. L., and Chung, C. H., 'Leaching characteristics of paraffin waste forms generated from Korean nuclear power plants,' Waste Management, 21, 325-333 (2001) https://doi.org/10.1016/S0956-053X(00)00071-4
  8. Keum, D. K., Lee, H. S., Lee, C. W., and Metz, V., 'Solubilities of Am, U, Np and Pu in granitic groundwater,' Environ. Eng. Res., 9(2), 75-87 (2004) https://doi.org/10.4491/eer.2004.9.2.075
  9. Peterson, S. and Wymer, R. G., Chemistry in Nuclear Technology, Addision-Wesley Publishing Co., Inc., USA, pp. 103 (1963)
  10. May, J. C., Rey, L., and Lee, C. J., 'Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays,' Radiat. Phys. Chem., 63(3-6), 709-711 (2002) https://doi.org/10.1016/S0969-806X(01)00474-1
  11. Sattlberger, A. P. and Atcher, R. W., 'Nuclear medicine finds the right chemistry,' Nature Biotechnol., 17(9), 849-850 (1999) https://doi.org/10.1038/12832
  12. Diehl, J. F., 'Food irradiation past, present and future,' Radiat. Phys. Chem., 63(3-6), 211-215 (2002) https://doi.org/10.1016/S0969-806X(01)00474-1
  13. Sadat, R., Ross, A., and Leveziei, H., Food Irradiation: A Global Scenario, In : Proc. Intern. Conf. On Applications of Radioisotopes and Radiation in Industrial Development (ICARID-94), S. M. Rao, K. M. Kulkarni (Eds.), February 7-9, 1994, Mumbai, India, pp. 177 (1994)
  14. List of Clearance of Irradiated Foods, International Atomic Energy Agency, Vienna, (1992)
  15. Lissel, T., European experiences with gamma irradiation of sewage sludge for disinfection and alternative treatments, in : Proc. Intern. Conf. On Applications of Radioisotopes and Radiation in Industrial Development (ICARID-98), D. D. Sood, A. V. R. Reddy (Eds.) February 4-6, 1998, Mumbai, India, pp. 105 (1998)
  16. Sood, D. D., Advances in Industrial Applications of Radioisotopes, in Proc. Intern. Conf. On Applications of Radioisotopes and Radiation in Industrial Developmet (ICARID-98), D. D. Sood, A. V. R. Reddy (Eds.), February 4-6, 1998, Mumbai, India, pp. 35 (1998)
  17. Luckman, G. J., 'Food irradiation: regulatory aspects in the Asia and Pacific region,' Radiat. Phys. Chem., 63(3-6), 285-288 (2002) https://doi.org/10.1016/S0969-806X(01)00474-1
  18. Feasibility of Separation and Utilization of Cesium and Strontium from High Level Waste. Technical Report Series 356, IAEA, Vienna (1993)
  19. Clearfield, A., 'Inorganic ion exchangers, past, present, and future,' Solvent Extr. Ion Exch., 18, 655 (2000) https://doi.org/10.1080/07366290008934702
  20. Lehto, J. and Harjula, R., 'Selective separation of radionuclides from nuclear waste solutions with inorganic ion exchangers,' Radiochim. Acta, 86, 65 (1999)
  21. Dyer, A., Mineral. Soc. Ser., 9, 319 (2000)
  22. Illman, D. L., Chem. Eng. News, 9 (1993)
  23. Wilson, E. K., Chem. Eng. News, 300, 30 (1997)
  24. Todd, T. A., Brewer, K. N., Law, J. D., Wood, D. J., Garn, T. G., Tillotson, R. D., Tullock, P. A., and Wade, E. L., WM'97 Proceedings, Vol. 2-6, Tucson, Arizona, pp. 2368 (1997)
  25. Zehnder, H. J., Radioaktivitat in Fruchte, Nussen und Verabeiteten Produkten 1986/87. Zeitscher. Obst-u. Weinbu, 124, 101 (1988)
  26. Rich, C. I., Mineralogy of Soil Potassium, In the Role of Potassium in Agriculture (Edited by Kilmer V. J., Younts S. E. and Brady N. C.) American Society of Agronomy, Madison, pp. 79 (1968)
  27. Johnson, J. E., Wilson, D. W., and Lindsay, W. L., 'Transfer of fallout $^{137}Cs$ from soil to dairy cattle feeds,' Soil Science Soc. of American Proc., 30, 416-417 (1966)
  28. Scott, R. R., 'An Introductory review. Interception and retention of airborne material on plants,' Health Phys., 11, 1305-1315 (1965) https://doi.org/10.1097/00004032-196512000-00007
  29. Kopp, P., Gorlich, W., Burkart, W., and Zehnder, H. J., Foliar Uptake of Radionuclides and Their Distribution in the Plant. IAEASM-306/50, Vol. II, pp. 37-46 (1989)
  30. Middleton, L. J., 'Absorption and translocation of Sr and Cs by plants from foliar sprays,' Nature, 181, 1300-1303 (1958) https://doi.org/10.1038/1811300a0
  31. Middleton, L. J., 'Radioactive strontium and cesium in the edible parts of crop plants after foliar contamination,' Int. J. Radioactive Biology, 4, 387 (1959)
  32. Oestling, O., Kopp, P., and Burkart, W., 'Foliar uptake of cesium, iodine and strontium and their transfer to the edible parts of beans, potatoes and radishes,' Radiation Phys. Chem., 33(6), 551-554 (1989)
  33. Kuhn, W., Handl, J., and Schuller, P., 'The influence of soil parameters on $^{134}Cs$ uptake by plants from long-term fallout on forest clearings and grassland,' Health Physics, 46(5), 1083-1093 (1984) https://doi.org/10.1097/00004032-198405000-00008
  34. Haak, E., Effect of K-Fertilization. Limiting and placement on crop uptake of cesium and strontium. Proceedings of First International Contact Seminar in Radioecology, Uppsala, pp. 247-254 (1985)
  35. Kanyar, B., Czegledi, P., Kerekes, A., Kovacs, L., and Sohar, J., 'Radiocesium concentration of grain following the Chernobyl accident,' Seminar on Comparative Assessment of the Environmental Impact of Radionuclides Released During Three Major Nuclear Accidents: Kyshtym, Windscale. Chernobyl, Luxembourg 1-5 October (1990)
  36. Middleton, L. J., and Squire, H. M., 'Further studies of radioactive strontium and cesium in agricultural crops after direct contamination,' Int. J. Radiative Biol., 6(6), 549-558 (1963) https://doi.org/10.1080/09553006314550661
  37. Bulovak, M. J., Wittwer, S. H., and Tukey, H. B., Above Ground Plant Parts as a Pathway for Entry of Fission Products into the Food Chain With Special Reference to $^{89}Sr,\;^{90}Sr\;and\;^{137}Cs.$ In E.B. Fowler, Radioactive Fallout, Soils, Plants, Food, Man. New York: Elsevier, (1965)
  38. Marschner, H., Mineral Nutrition of Higher Plants. London, Academic Press (1986)
  39. Kuppelwicscr, H., and Feller, U., 'Transport of Rb and Sr to the car in mature, excised shoots of wheat: Effects of temperature and stem length on Rb removal from the xylem,' Plant Soil, 132, 281-288 (1991) https://doi.org/10.1007/BF00010409
  40. Whicker, F. W., and Schultz, V., Radioecology : Nuclear Energy and the Environment. Boca Raton, FL; CRC Press, Vol. I, pp. 151-152 (1982)
  41. Madoz-Escande, C., Henner, P. and Bonhomme, T., 'Foliar contamination of Phaseolus vulgaris with aerosols of $^{137}Cs,\;^{85}Sr,\;^{133}Ba\;and\;^{123m}Te$ : Influence of plant development stage upon contamination and rain,' J. Environ. Radioactivity, 73, 49-71 (2004) https://doi.org/10.1016/j.jenvrad.2003.08.001
  42. Coughtrey, P. J., and Thorney, M. C., Radionuclide distribution and transport in terrestial and aquatic ecosystems. A Critical Review of Data, Vol. I, A. A. Balkema/ Rotterdam pp. 93-102 (1983)
  43. Jackson, R. E. and Inch, K. J., 'Partitioning of strontium-90 among aqueous and mineral species in a contaminated aquifer,' Environ. Sci. Technol., 17(4), 231-237 (1983) https://doi.org/10.1021/es00110a010
  44. Clearfield, A., Proceedings of the First Hanford Separation Science Workshop, Battelle, PNL, Richland, WA, PNL-SA-2175, pp. 77 (1993)
  45. Elizabeth, A., Behrens, E. A., and Clearfield, A., 'Titanium silicates, $M_{3}HTi_{4}O_{4}(SiO_{4})_{3}.4H_{2}O\;(M\;=\;Na^{+},\;K^{+})$, with three-dimensional tunnel structures for the selective removal of strontium and cesium from wastewater solutions,' Microporous Materials, 11, 65-75 (1997) https://doi.org/10.1016/S0927-6513(97)00022-9
  46. Vesely, V. and Pekarek, V., 'Synthetic inorganic ion exchangers-I. Hydrous oxides and acidic salts of multivalent metals,' Talanta, 19(3), 219-262 (1972) https://doi.org/10.1016/0039-9140(72)80075-4
  47. Parks, G. A., 'The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxo complex systems,' Chem. Rev., 65(2), 177198 (1965) https://doi.org/10.1021/cr60234a002
  48. Dutta, N. C., Radiochim. Acta, 79, 25 (1997)
  49. Bhattacharyya, D. K. and Dutta, N. C., 'A study of the immobilization of strontium over crystalline titania,' J. Mater. Sci., 30, 2248 (1995) https://doi.org/10.1007/BF01184567
  50. Shabana, E. I. and El-Dessouky, M. I., 'Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium,' J. Radioanal. Nucl. Chem., 253(2), 281-284 (2002) https://doi.org/10.1023/A:1019610128059
  51. Mishra, S. P. and Tiwari, D., 'Inorganic Ion exchangers in radioactive waste management. Part XII : Removal behavior of stannic and zirconium phosphates for strontium,' J. Radioanal. Nucl. Chem., 253, 421-426 (2002) https://doi.org/10.1023/A:1020469419766
  52. Van, W., De, Villiers. Z., and Klerk, S., Radiochim. Acta, 54, 205 (1981)
  53. Satyanaryana, J., Murthy, G. S., and Sasidhar, P., 'Adsorption studies of caesium on zirconium molybdoarsenate (ZrMAs),' Waste Managem., 19(6), 427-432 (1999) https://doi.org/10.1016/S0956-053X(99)00200-7
  54. Satyanarayana, J., Reddy, V. N., Murthy, G. S., and Dash, A., 'Synthesis and ion-exchange properties of zirconium molybdoarsenate (ZrMAs),' J. Radioanal. Nucl. Chem., 188(5), 323-330 (1994) https://doi.org/10.1007/BF02162984
  55. Satyanarayana, J., Reddy, V. N., Murthy, G. S., and Dash, A., Ind. J. Chem. Technol., 2, 18 (1988)
  56. Kumar, S. S., Sivaiah, M. V., Venkatesan, K. A., Krishna, R. M., Murthy, G. S., and Sasidhar, P., 'Removal of cesium and strontium from acid solution using a composite of zirconium molybdate and zirconium tungstate,' J. Radioanal. Nucl. Chem., 258, 321-327 (2003) https://doi.org/10.1023/A:1026241906044
  57. Tripathi, A., Medvedev, D. G., Nyman, May, and Clearfield, A., 'Selectivity for Cs and Sr in Nb-sustituted titanosilicate with Sitinakite Topology,' J. Solid State Chem., 175, 72-83 (2003) https://doi.org/10.1016/S0022-4596(03)00145-2
  58. Viallis-Terrisse, H., Nonat, A., Petit, J. C., Landesman, C., and Richet, C., 'Specific interaction of cesium with the surface of calsium silicate hydrate,' Radiochim. Acta, 90(9-11), 699-704 (2002) https://doi.org/10.1524/ract.2002.90.9-11_2002.699
  59. Puziy, A. M., 'Cesium and Strontium exchange by the framework potassium titanium silicate $K_{3}HTi_{4}O_{4}(SiO_{4})_{3}.4H_{2}O$,' J. Radioanal. Nucl. Chem., 237(1-2), 73-79 (1998) https://doi.org/10.1007/BF02386665
  60. Hritzko, B. J., Walker, D. D., and Wang, N. H. L., 'Design of a carousel process for cesium removal using crytalline silicotitanate,' AIChE Journal, 46(3), 552-564 (2000) https://doi.org/10.1002/aic.690460314
  61. Hakem, N., Apps, J. A., Moridis, G. J., and Mahamid, I. A., 'Sorption of fission product radionuclides, $^{137}Cs\;and\;^{90}Sr$, Savannah River sediments, impregnated with colloidal silica,' Radiochim. Acta, 92(7), 419-432 (2004) https://doi.org/10.1524/ract.92.7.419.35754
  62. Dion, M., Piffard, Y., and Tournoux, M., 'The tetra-titanates $M_{2}Ti_{4}O_{9}$ (M = Li, Na, K, Rb, Cs, Tl, Ag),' J. Inorg. Nucl. Chem., 40, 917-918 (1978) https://doi.org/10.1016/0022-1902(78)80175-4
  63. Watanabe, M., Banda, Y., and Tsutsumi, M., 'A new member of sodium titanates : $Na_{2}Ti_{9}O_{19}$,' J. Solid State Chem., 28, 397-399 (1979) https://doi.org/10.1016/0022-4596(79)90091-4
  64. Heinonen, O. J., and Lehto, J., 'Sorption of strontium(II) and radio strontium ions on sodium titanate,' Radiochim. Acta, 28, 93-96 (1981)
  65. Sasaki, T., Komatsu, Y., and Fujiki, Y., 'Ion exchange properties of hydrous titanium dioxide with a fibrous form obtained from dititanate,' Solvent Extrc. Ion Exch., 1, 775-778 (1983) https://doi.org/10.1080/07366298308918428
  66. Chaliyan, K. N., 'Adsorption of $^{90}Sr$ radionuclide on synthetic titanium containing sorbents,' Radiochimiya, 26, 390-392 (1984)
  67. Dubrovin, V. S. and Malimonova, S. I., 'Physico-chemical and sorption properties of sodium titanate,' Radiochimiya, 27, 465-472 (1985)
  68. Longsdail, D. H. and Mills, A. I., Ion Exchange and Solvent Extraction in Nuclear Fuel Cycle. Soc. Chem. Ind. Ellis, Horwood, West Sussex (1985)
  69. Clearfield, A. and Lehto, J., 'Preparation, structure and ion-exchange properties of $Na_{4}Ti_{9}O_{20}.xH_{2}O$,' J. Solid State Chem., 73, 98-106 (1988) https://doi.org/10.1016/0022-4596(88)90059-X
  70. Sugita, M., Isuji, M,m and Abe, M., 'Synthetic ion exchange materials LVIII. Hydrothermal synthesis of a new layered lithium titanate and its alkali ion exchanger,' Bull. Chem. Soc. Jpn., 63, 1978-1984 (1990) https://doi.org/10.1246/bcsj.63.1978
  71. Mishra, S. P. and Srinivasu, N., 'Ion exchangers in radioactive waste management. Part VI. Radiotracer studies on adsorption of barium ions on potassium titanate,' Radiochim. Acta, 61, 47-52 (1993)
  72. Srinivasu, N. PhD. Thesis, Removal of Barium and Strontium Ions from Aqueous Solutions by Some Titanate Powders - A Radiotracer Study, Banaras Hindu University, Varanasi, India (1992)
  73. Mishra, S. P., Dubey, S. S., and Tiwari, D., 'Ion exchangers in radioactive waste Inanagement. Part XIV : Removal behavior of hydrous titanium oxide and sodium titanate for Cs(I),' J. Radioanal. Nucl. Chem., 261(2), 457-463 (2004) https://doi.org/10.1023/B:JRNC.0000034885.26277.bd
  74. Poojary, D. M., Cahill, R. A., and Clearfield, A., 'Synthesis, crystal structures, and ionexchange properties of a novel porous titanosilicate,' Chem. Mater., 6(12), 2364-2368 (1994) https://doi.org/10.1021/cm00048a024
  75. Zheng, Z., Philip, C. V., Anthony, R. G., Krumhansl, J. L., Trudell, D. E., and Miller, J. E., 'Ion exchange of group I metals by hydrous crystalline silicotitanate,' Ind. Eng., Chem. Res., 35(11), 4246-4256 (1996) https://doi.org/10.1021/ie960073k
  76. Walker, F., Tayler, P. A., and Lee, D. D., Sep. Sci. Technol., 34, 1167 (1999) https://doi.org/10.1080/01496399908951087
  77. Abe, M., Chitrakar, R., Tsuji, M., and Fukumoto, K., Solvent Extr. Ion Exch., 3, 149 (1985) https://doi.org/10.1080/07366298508918506
  78. Qureshi, M. and Gupta, J. P., 'Preparation and properties of titanium(IV) tungstate,' J. Chem. Soc. A, 1755-1759 (1969) https://doi.org/10.1039/j19690001755
  79. Moller, T., Clearfield, A., and Harjula, R., 'Preparation of hydrous mixed metal oxides of Sb, Nb, Si, Ti and W with a pyrochlore structure and exchange of radioactive cesium and strontium ions into the materials,' Microporous and Mesoporous Mat., 54, 187-199 (2002) https://doi.org/10.1016/S1387-1811(02)00320-7
  80. Sivaiah, M. V, Venkatesan, K. A., Krishna, R. M., Sasidhar, P., and Murthy, G. S., 'Ion exchange properties of strontium on in-situ precipitated polyantimonic acid in amberlite XAD-7,' Separation & Purification Technol., 44, 1-9 (2005) https://doi.org/10.1016/j.seppur.2004.03.016
  81. Sivaiah, M. V., Venkatesan, K. A., Krishna, R. M., Sasidhar, P., and Murthy, G. S., 'Ion exchange and chromatographic separtion of cesium, strontium and europium from acidic streams using uranium antimonite,' Radiochim. Acta, 92, 507-512 (2004) https://doi.org/10.1524/ract.92.8.507.39278
  82. Dzombak, D. A., and Morel, F. F., Surface Complexation Modeling. Hydrous Ferric Oxide, Wiley, New York, (1990)
  83. Cornell, R. M. and Schwertmann, The Iron Oxides, VCH, Weinheim, (1996)
  84. Sparks, D. L., 'New frontiers in elucidating the kinetics and mechanisms of metal and oxyanion sorption at the soil mineral/water interface,' J. Plant Nutr. Soil Sci., 163(6), 563-570 (2000) https://doi.org/10.1002/1522-2624(200012)163:6<563::AID-JPLN563>3.0.CO;2-0
  85. Lutzekirchen, J. Aquat. Geochem., 7, 217 (2001) https://doi.org/10.1023/A:1012973630754
  86. Davis, J. A. and Leckie, J. O., 'Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions,' J. Colloid Interface Sci., 67(1), 90-107 (1978) https://doi.org/10.1016/0021-9797(78)90217-5
  87. Roden, E. E. and Zachara, J. M., 'Microbial reduction of crystalline iron(III) oxides. Influence of oxide surface area and potential for cell growth,' Environ. Sci. Technol., 30(5), 1618-1628 (1996) https://doi.org/10.1021/es9506216
  88. Wilett, I. R., Chartes, C. J., and Nguyen, T. T., J. Soil Sci., 39, 275 (1988) https://doi.org/10.1111/j.1365-2389.1988.tb01214.x
  89. Fuller, C. C., Dadis, J. A., and Waychunas, G. A., 'Surface Chemistry of ferrihydrite : Part-2. Kinetics of arsenate adsorption and coprecipitation,' Geochim. Cosmochim. Acta, 57(10), 2271-2282 (1993) https://doi.org/10.1016/0016-7037(93)90568-H
  90. Axe, L. and Anderson, P. R., 'Sr diffusion and reaction within Fe-oxides : Evaluation of the rate-limiting mechanism for sorption,' J. Colloid Interface Sci., 175(1), 157-165 (1995) https://doi.org/10.1006/jcis.1995.1441
  91. Beinum, W. V., Hofman, A., Meeussen, J. C. L., and Kretzschmar, R., 'Sorption kinetics of strontium in porous hydrous ferric oxide aggregates I. The Donnan diffusion model,' J. Colloid & Interface Sci., 283(1), 18-28 (2005) https://doi.org/10.1016/j.jcis.2004.08.067
  92. Beinum, W. V., Hofman, A., Meeussen, J. C. L., and Kretzschmar, R., 'Sorption kinetics of strontium in porous hydrous ferric oxide aggregates II. Comparison of experimental results and model predictions,' J. Colloid & Interface Sci., 283(1), 29-40 (2005) https://doi.org/10.1016/j.jcis.2004.08.105
  93. Nakashima, M., Nakasshio, N., Kameo, Y., Fukui, T., Isobe, M., Ohtake, A., and Wakui, T., 'Effects of basicity and FeO concentration on the retention of $^{137}Cs\;and\;^{60}Co$ made from non-metallic radioactive wastes,' Radiochim. Acta, 91(1), 45-52 (2003) https://doi.org/10.1524/ract.91.1.45.19016
  94. Bruno, G., Decarreau, A., Proust, D., and Lajudie, A., 'Clay mineral transformations in static hydrothermal conditions within a simulated engineered barrier for nuclear waste disposal,' Applied Clay Science, 7(1-3), 169-178 (1992) https://doi.org/10.1016/0169-1317(92)90037-N
  95. Nowak, E. J., Scientific Basis for Nuclear Waste Management; Ed. C. J. Northrup, Plenum Press, Vol. 2, New York, pp. 403 (1980)
  96. Keum, D. K., Choi, B. J., Baik, M. H., and Hahn, P. S., 'Uranium(VI) adsorption and transport in crushed granite,' Eviron. Eng. Res., 7(2), 103-111 (2002)
  97. Kang, M. J., Han, B. E., and Hahn, P. S., 'Precipitation and adsorption of uranium(VI) under various aqueous conditions,' Environ. Eng. Res., 7(3), 149-157 (2002) https://doi.org/10.4491/eer.2002.7.3.149
  98. Pusch, R., and Carnland, O., Preliminary Report on Longevity of Montmorillonite Clay Under Repository-Related Conditions. Report SKB-90-44. Swedish Nuclear Fuel and Waste Management, Stockholm, ISSN 0284-3757, pp. 47 (1990)
  99. Muurinen, A., 'Diffusion of Anions and Cations in Compacted Sodium Bentonite,' Ph. D. Thesis, Univ. Helsinki. VTT Publications, Finland, pp 168 (1994)
  100. McCombie, C., McKinlay, I. G., Lambert, A., Thury, M., and Birkhauser, P., 'The Swiss Strategy for HLW Siting; Parallel Investigation of Two Alternative Host Rocks,' Scientific Basis for Nuclear Waste Management, 18, 1363-1370 (1995)
  101. Madsen, F. T., 'Clay mineralogical investigations related to nuclear waste disposal,' Clay Miner., 33, 109-129 (1998) https://doi.org/10.1180/000985598545318
  102. Liang, T. J., Hsu, C. N., and Liou, D. C., 'Modified Freundlich sorption of cesium and strontium on Wyoming Bentonite,' Appl. Radiat. Isot., 44(9), 1205-1208 (1993) https://doi.org/10.1016/0969-8043(93)90065-I
  103. Khan, S. A., 'Sorption of the long-lived radionuclides cesium-134, strontium-85 and cobalt-60 on bentonite,' J. Radioanal. Nucl. Chem., 258(1), 3-6 (2003) https://doi.org/10.1023/A:1026217020215
  104. Hurel, C., Marmier, N., Seby, F., Giffaut, E., Bourg, A. C. M., and Fromage, F., 'Sorption behaviour of cesium on a bentonite sample,' Radiochim. Acta, 90(9), 695-698 (2002) https://doi.org/10.1524/ract.2002.90.9-11_2002.695
  105. Akbar, D., Shahwan, T., and Eroglu, A. E., 'Kinetic and thermodynamic ivestigations of strontium ions retention by kaolinite and clinoptilolite minerals,' Radiochim. Acta, 93(8), 477-485 (2005) https://doi.org/10.1524/ract.2005.93.8.477
  106. Nikashina, V. A., Tyurina, V. A., Senjavin, M. M., Stefanov, G. I., Gradev, G. D., Stefanova, I. G., and Avramova, A. I., 'Comparative characteristics of the ionexchange properties of natural clinoptilolites from Bulgaria and the USSR for the purpose of purification of liquid wastes from nuclear power plants. Part I: Study of the equilibrium sorption of cesium and strontium ions from solutions of different composition,' J. Radioanal. Nucl. Chem., 105(3), 175-184 (1986) https://doi.org/10.1007/BF02162967
  107. Akyuz, T., Akyuz, S., and Bassari, A., 'The sorption of cesium and strontium ions onto red-clay from Sivrihisar-Eskisehir (Turkey),' J. Radioanal. Nucl. Chem., 38(1-4), 337-344, (2000)
  108. Nemes Z., Nagy, N. M., and Koya, J., 'Kinetics of strontium ion adsorption on natural clay samples,' J. Radioanal. Nucl. Chem., 266(2), 289-293 (2005) https://doi.org/10.1007/s10967-005-0906-3
  109. Bashasrin, A. V., Vishnevskaya, A. A., Drugachenok, M. A., Lebedeva, A. S., and Baklai, A. A., 'Sorption recovery of $^{137}CS\;and\;^{90}Sr$ with carbonate-containing natural mineral tripolite,' Radiochemistry, 45(3), 286-289 (2003) https://doi.org/10.1023/A:1026072428425
  110. Shahwan, T. and Erten, H. N., 'Characterization of $Sr^{2+}$ uptake on natural minerals of kaolinite and magnesite, by using XRPD, SEM/EDS, XPS, and DRIFT,' Radiochim. Acta, 93(4), 225-232 (2005) https://doi.org/10.1524/ract.93.4.225.64066
  111. Gutierrez, M., 'A Langmuir isotherm-based prediction of competitive sorption of Sr, Cs and Co in a Ca-montmorillonite,' Waste Management 13(4), 327-332, (1993) https://doi.org/10.1016/0956-053X(93)90061-Z
  112. Hsu, C. N., Wei, Y. Y., Chuang, J. T., Tseng, C. L., Yang, J. Y., Ke, C. H., and Cheng, H. P., 'Sorption of several safety relevant radionuclides on granite and diorite-A repository host rock in the Taiwan area,' Radiochim. Acta, 90(9-11), 659-664 (2002) https://doi.org/10.1524/ract.2002.90.9-11_2002.659
  113. Bors, J., Gorny, A., and Dultz, St., 'Some factors affecting the interactions of organophilic clay minerals with radioiodine,' Radiochim. Acta, 66/67, 309-313 (1994)
  114. Bors, J., Gorny, A., and Dultz, S., 'Iodide, cesium and strontium adsorption by organophilic vermiculite,' Clay Miner., 32, 21-28 (1997) https://doi.org/10.1180/claymin.1997.032.1.04
  115. Bors, J., Dultz, S., and Riebe, B., 'Organophilic bentonite as adsorbents for radionuclides I. Adsorption of ionic fission products,' Appl. Clay Sci., 16, 1-13 (2000) https://doi.org/10.1016/S0169-1317(99)00041-1
  116. Sivaiah, M. V., Kumar, S. S., Venkatesan, K. A., Sasidhar, P., Krishna, R. M., and Murthy, G. S., 'Sorption of strontium on zirconia modified vermiculite,' J. Nucl. Radiochem. Sci., 5(2), 33-36 (2004) https://doi.org/10.14494/jnrs2000.5.33
  117. Oscarson, D. W., Dixon, D. A., and Gray, M. N., 'Swelling capacity and permeability of an unprocessed and a processed bentonite clay,' Eng. Geol., 28, 281-289 (1990) https://doi.org/10.1016/0013-7952(90)90013-Q
  118. Oscarson, D. W., Hume, H. B., and Choi, J. W., 'Diffusive transport in compacted mixtures of clay and crushed granite,' Radiochim. Acta, 65, 189-194 (1994)
  119. Molera, M. and Eriksen, T., 'Diffusion of $^{22}Na^{+},\;^{85}Sr^{2+},\;^{134}Cs^{+}\;and\;^{57}Co^{2+}$ in bentonite clay compacted densities : Experiments and modeling,' Radiochim. Acta, 90(9-11), 753-760 (2002) https://doi.org/10.1524/ract.2002.90.9-11_2002.753
  120. Tsai, S. C., Ouyang, S., and Hsu, C. N., 'Sorption and diffusion behavior of Cs and Sr on Jih-Hsing bentonite,' Appl. Radiat. Isot., 54(2), 209-215 (2001) https://doi.org/10.1016/S0969-8043(00)00292-X
  121. Torstenfelt, B., Andersson, K., and Allard, B., 'Sorption of strontium and cesium on rocks and minerals,' Chem. Geology, 36(1-2), 123-137 (1982) https://doi.org/10.1016/0009-2541(82)90036-5
  122. Tsai, S. C., Juang, K. W., and Jan, Y. L., 'Sorption of cesium on rocks using heterogeneity-based isotherm models,' J. Radioanal. Nucl. Chem., 266(1), 101-105 (2005) https://doi.org/10.1007/s10967-005-0876-5
  123. Moreno, L., Gylling, B., and Neretnieks, I., 'Solute transport in fractured media - the important mechaniss for performance assessment,' J. Contam. Hydrol., 25(3-4), 283-298 (1997) https://doi.org/10.1016/S0169-7722(96)00037-X
  124. Tsukamoto, M., and Ohe, T., 'Intraparticle diffusion of cesium and strontium cations into rock materials,' Chem. Geology, 90(1-2), 31-44 (1991) https://doi.org/10.1016/0009-2541(91)90029-Q
  125. Gurumoorthy, C., and Singh, D. N., 'Diffusion of iodide, cesium and strontium in Charnokite rock mass,' J. Radioanal. Nucl. Chem., 262(3), 639-644 (2005) https://doi.org/10.1007/s10967-005-0487-1
  126. Djurova, E., Stefanova, I., And Gradev, G., 'Geological, mineralogical and ion exchange charateristics of zeolite rocks from Bulgaria,' J. Radioanal. Nucl. Chem., 130(2), 425-432 (1989) https://doi.org/10.1007/BF02041361
  127. Akyuz, T., 'Strontium and cesium sorption of some anatonian zeolites,' J. Inclusion Phenomena & Macrocyclie Chem., 26(1-3), 89-91 (1996) https://doi.org/10.1007/BF01029923
  128. Matel, I., Kelto, D., and Sek, F. M., 'Adsorption of alkali and alkaline earth radionuclides on zeolite from waste solutions,' J. Radioanal. Nucl. Chem., 154(2), 81-88 (1991) https://doi.org/10.1007/BF02162665
  129. Kuronen, M., Harjula, R., and Lehto, J., 'Comparison of technique for measuring ion exchange selectivities in zeolites,' Radiochim. Acta, 93(2), 119-123 (2005) https://doi.org/10.1524/ract.93.2.119.59416
  130. Hassan, N. M., 'Adsorption of cesium from spent nuclear fuel basin water,' J. Radioanal. Nucl. Chem., 266(1), 57-59 (2005) https://doi.org/10.1007/s10967-005-0868-5
  131. Haggerty, G. M. and Bowman, R. S., 'Sorption of chromate and other inorganic anions by organa-zeolites,' Environ. Sci. Technol., 28(3), 452-458 (1994) https://doi.org/10.1021/es00052a017
  132. Widestrand, H., Andersson, P., Byegard, J., Skarnemark, G., Skalberg, M., and Wass, E., 'in-situ migration experiments at Aspo Hard Rock Laboratory, Sweden : Results of radioactive tracer migration studies in a single fracture,' J. Radioanal. Nucl. Chem., 250(3), 501-517 (2001) https://doi.org/10.1023/A:1017905323689
  133. Sanford, W. E., Larsen, J. L., McConnell Jr., J. W., and Rogers, R., 'Upward migration of radio-cesium and strontium in a sand filled Lysimeter,' J. Environ. Radioactivity, 41(2), 147-162 (1998) https://doi.org/10.1016/S0265-931X(98)00005-8
  134. Berry, J. A., Bourke, P. J., Coates, H. A., Green, A., Jefferies, N. L., Littleboy, A. K., and Hooper, A. J., 'Sorption of radionuclides on sandstone and mudstone,' Radiochim. Acta, 44/45, 135-141 (1988)
  135. Comans, R. N. J. and Hockley, D. E., 'Kinetics of cesium sorption on illite,' Geochim. Acta, 56, 1157-1165 (1992) https://doi.org/10.1016/0016-7037(92)90053-L
  136. Um, W. and Serne, R. J., 'Sorption and transport behavior of radionuclides in the proposed low-level waste disposal facility at the Hanford Site, Washington,' Radiochim. Acta, 93(1), 57-63 (2005) https://doi.org/10.1524/ract.93.1.57.58295
  137. Hakem, N. L., Mahamid, I. A., Apps, J. A., and Moridis, G. J., 'Sorption of cesium and strontium on Hanford soil,' J. Radioanal. Nucl. Chem., 246(2), 275-278 (2000) https://doi.org/10.1023/A:1006701902891
  138. Erten, H. N., Aksoyoglu, S., Hatipoglu, S., and Gokturk, H., 'Sorption of cesium and strontium on montmorillonite and kaolinite,' Radiochim. Acta, 44/45, 147 (1988)
  139. Helfferich, F., Ion Exchange Kinetics-Evaluation of a Theory. Mass Transfer and Kinetics of Ion Exchange. (Liberti L. and Helfferich F Eds.), Martnus Nijoff, Dordrecht (1983)
  140. Hsu, C. N., Liu, D. C., and Chuang, C. L., 'Equilibrium and kinetic sorption behaviors of cesium and strontium in soils,' Appl. Radiat. Isot., 45(10), 981-985 (1994) https://doi.org/10.1016/0969-8043(94)90165-1
  141. Liu, D. C., Hsu, C. N., and Chuang, C. L., 'Ion-exchange and sorption kinetics of cesium and strontium in soils,' Appl. Radiat. Isot., 46(9), 839-846 (1995) https://doi.org/10.1016/0969-8043(95)00175-D
  142. Ohnuki, T., 'Sorption characteristics of strontium on sandy soils and their components,' Radiochim. Acta, 64, 237-245 (1994)
  143. Gutierrez, M. and Fuentes, H. R., 'Competitive adsorption of cesium, cobalt and strontium in conditioned clayey soil suspensions,' J. Environ. Radioactivity, 13(4), 271-282 (1991) https://doi.org/10.1016/0265-931X(91)90001-V
  144. Yasuda, H., Uchida, S., Muramatsu, Y., and Yoshida, S., 'Sorption of manganese, cobalt, zinc, strontium, and cesium onto agricultural soils: Statistical analysis on effects of soil properties,' Wat. Air Soil Pollut., 83(1-2), 85-96 (1995) https://doi.org/10.1007/BF00482590
  145. Mincher, B. J., Fox, R. V., Riddle, C. L. and Cooper, D. G., 'Strontium and cesium sorption to Snake river plain, Idaho soil,' Radiochim. Acta, 92(1), 55-61 (2004) https://doi.org/10.1524/ract.92.1.55.25408
  146. Mishra, S. P. and Tiwari, D., 'Biosorptive behavior of some dead biomasses in the removal of Sr(85+89) from aqueous solutions,' J. Radioanal. Nucl. Chem., 251(1), 47-53 (2002) https://doi.org/10.1023/A:1015090110293
  147. Mishra, S. P., Tiwari, D., Prasad, S. K., Dubey, R. S., and Mishra, M., 'Biosorptive behavior of Mango (Mangifera indica) and Neem (Azadirachta indica) barks for Cs-134 from aqueous solutions: A radiotracer study,' J. Radioanal. Nucl. Chem., 268(2), 191-199 (2006) https://doi.org/10.1007/s10967-006-0153-2
  148. Mishra, S. P., Prasad, S. K., Dubey, R. S., Mishra, M., Tiwari, D., and Lee, S. M., 'Biosorptive behavior of rice hulls for Cs-134 from aqueous solutions: A radiotracer study,' Communicated for IWA Conference on. 'Sustainable Water Management Practices', September 10-14, 2006, Beijing, PRChina
  149. Kokke, R., Zuilekom, J. T. Van., and Wiken, T. O., 'Detection and isolation of radionuclideaccumulating bacteria by autoradiography,' Antonie van Leeuwenhoek, 35(1), 121-128 (1969) https://doi.org/10.1007/BF02219123
  150. Jalali-Rad, R., Ghafourian, H., Asef, Y., Dalir, S. T., Sahafipour, M. H., and Gharanjik, B. M., 'Biosorption of cesium by native and chemically modified biomass of marine algae: Introduce the new biosorbents for biotechnology applications,' J. Hazardous Materials, B116, 125-134 (2004)
  151. Luo, S. L., Liu, N ., Yang, Y., Zhang, T., Jin, J., and Liao, J., Biosorption of americium241 by Candida sp. Radiochim. Acta, 91(6), 315-318 (2003) https://doi.org/10.1524/ract.91.6.315.20024
  152. Ferris, F. G., Hallberg, R. O., Lyven, B., and Pedersen, K., 'Retention of strontium, cesium, lead and uranium by bacterial iron oxides from a subterranean environment,' Applied Geochem., 15(7), 1035-1042 (2000) https://doi.org/10.1016/S0883-2927(99)00093-1
  153. Balarama, Krishna., M. V., Rao, S. V., Arunachalam, J., Murali, M. S., Kumar, S., and Manchanda, V. K., 'Removal of $^{137}Cs\;and\;^{90}Sr$ from actual low level radioactive waste solutions using moss as a phytosorbent,' Sep. Purification Technol., 38, 149-161 (2004) https://doi.org/10.1016/j.seppur.2003.11.002
  154. Mietelski, J. W., LaRosa, J., and Ghods, A., '$^{90}Sr\;and\;^{239+240}Pu^{238}Pu^{241}Am$ in some samples of Mushrooms and forest soil from Poland,' J. Radioanal. Nucl. Chem., 170(1), 243-258 (1993) https://doi.org/10.1007/BF02134596
  155. Zehnder, H. J., Kopp, P., Eikenberg, J., Feller, U., and Oertli, J. J., 'Up take and transport of radioactive cesium and strontium into grapewines after leaf contamination,' Radiat. Phys. Chem., 46(1), 61-69 (1995) https://doi.org/10.1016/0969-806X(94)00115-Z
  156. Carini, F. and Lombi, E., 'Foliar and soil uptake of $^{137}Cs\;and\;^{85}Sr$ by grape vines,' The Sci. of the Total Environ., 207, 157-164 (1997) https://doi.org/10.1016/S0048-9697(97)00261-1
  157. Scotti, I. A. and Carini, F., 'Heavy metal effect on uptake and translocation of $^{134}Cs\;and\;^{85}Sr$ in Aubergine plants,' J. Environ. Radioactivity, 48, 183-190 (2000) https://doi.org/10.1016/S0265-931X(99)00063-6
  158. Solecki, J., Reszka, M., and Chibowski, S., '$^{90}Sr\;and\;^{137}Cs$ radioisotopes and heavy metal concentrations in pharmaceutical herb plants from the Lublin (Poland) region,' J. Radioanal. Nucl. Chem., 257(2), 261-265 (2003) https://doi.org/10.1023/A:1024763208650
  159. Twining, J. R., Payne, T. E., and Itakura, T., 'Soil-water distribution coefficients and plant trasfer factors for $^{134}Cs,\;^{85}Sr\;and\;^{65}Zn$ under field conditions in tropical Australia,' J. Environ. Radiactivity, 71(1), 71-87 (2004) https://doi.org/10.1016/S0265-931X(03)00142-5
  160. Knox, A. S., 'Cesium-137 partitioning to Wetland sediments and uptake by plants,' J. Radioanal. Nucl. Chem., 264(2), 393-399 (2005) https://doi.org/10.1007/s10967-005-0727-4
  161. Nakanishi, T. M., '$^{109}Cd$ uptake and translocation in a soyabean plant under different pH conditions,' J. Radioanal. Nucl. Chem., 264(2), 303-306 (2005) https://doi.org/10.1007/s10967-005-0711-z

Cited by

  1. Application of a novel electrochemical sensor containing organo-modified sericite for the detection of low-level arsenic vol.23, pp.2, 2016, https://doi.org/10.1007/s11356-015-5747-1
  2. Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination vol.3, pp.3, 2015, https://doi.org/10.1016/j.jascer.2015.04.002