ABSTRACT

Inhibitory Effects of Scutellaria barbata D. Don on the Cell Proliferation of HeLa cells

Jee-Yeun Ha, Jung-Hoon Cho, Jun-Bock Jang, Kyung-Sub Lee
Dept. of Oriental Gynecology, College of Oriental Medicine, Kyung Hee University, Seoul, Korea

Purpose: This study was conducted to investigate the inhibitory effects of Scutellaria barbata D. Don on the cell proliferation of HeLa Cells.

Methods: Human uterine cervical carcinoma HeLa cells were cultured in the 1%, 5% and 10% concentration of Scutellaria barbata D. Don solution for 24, 48 and 72 hours for the direct inhibitory effects of Scutellaria barbata D. Don. Then we examined the effect of Scutellaria barbata D. Don solution on the cell proliferation inhibition by XTT assay, DNA fragmentation, MAP kinase activity and caspase activity by FACS analysis in HeLa cells.

Results: We found that the proliferation of HeLa cells was significantly decreased in Scutellaria barbata D. Don solution containing groups comparing with a control group in a concentration-dependant manner. When HeLa cells were cultivated for 24 hours with 5% Scutellaria barbata D. Don solution containing group, the percentage of HeLa cells with activated caspase was the highest. Scutellaria barbata D. Don solution reduced the MAP kinase activity of HeLa cells comparing with the control group. By the XTT assay, the cell’s activity was decreased in 5% and 10% Scutellaria barbata D. Don solution containing groups in 24 and 72 hours cultivation and 10% group in 48 hours. DNA fragmentation and caspase-3 activity of HeLa cells, however, were changed insignificantly.

Conclusion: From this study we could suggest that Scutellaria barbata D. Don is available to the inhibition and apoptosis of human cervical carcinoma cell line, HeLa cells in vitro.

Key words: Scutellaria barbata D. Don, HeLa cell, FACS, caspase-3, DNA fragmentation, XTT, MAP kinase
I. 緒 論

子宮頸部癌은 여성에게서 가장 많이 발생되는 약성 종양 중의 하나로 срок 및
진단과 적절한 치료로 사망률을 감소시
킬 수 있으나, 세계적으로 골반 암중을 가진 여성들 중에서 가장 흔한 사망 원
인이다. 1-2 이로, 3-4 인구의 20%에서 50세 미만 연령대의 성인 여성에 비해,
5-6 인구의 20%에서 50세 이상 연령대의 성인 여성에 비해 발생률이 높아
7-8 알려져 있다. 9-10 아동, 11-12 생후 1년 이내의 아동, 13-14 생후 1년 재생
생에 의한 인자로 알려져 있다. 1-4

한약재는 양성한 유전학적 해부학적 연구를 통한 결과에서 시험의 진행은
15-16 복합체로, 17-18 구체적인 방법을 제시한
19-20 가열제가 있으며, 21-22 이에 의한 결과를 알아보고자 한다. 23-24

1. 实 驗

1) 材 料

牛枝蓮은 脣形科 (Labiatae)에 속하는 牛枝蓮 (Scutellaria barbata
D. Don)의 全草로 慶熙일반 0608 病院 藥劑과에서 구입하여 사용하였다.

2) 細胞培養

子宮頸部癌細胞株인 HeLa cell line를 ATCC社 (USA)로부터 구입하였다.
RPMI 1640 media (Sigma, USA)를 기
본 배지로 10% fetal bovine serum (Hyclone, USA: 이하 FBS)와 1% penicillin/streptomycin (Sigma, USA)을 청가하여 37℃ 5% CO2 배양
기 (Forma, USA)에서 HeLa cell을 배양
하였다. Phosphate buffered saline (Gibco, USA: 이하 PBS)로 세포를 세
척하고 0.25% trypsin/EDTA (Gibco, USA)를 처리하여 분리한 후 1,500 rpm
에서 5분간 원심분리하였다. 이렇게 분
2. 방법
1) 검체의 제조

牛枝같 100 g에 1.5 ℓ의 증류수를 가한 후 1시간 동안 중탕분리한 추출액을 3,000 rpm에서 20분간 원심분리한 후 0.45 μm filter (Gelma, Germany)로 여과하여 牛枝같 檢液을 제조한 후 실험에 사용하였다.

2) 실험군 설정

대조군은 2% FBS만이 첨가된 배양액을 사용하였고, 실험군은 2% FBS와 1%, 5% 및 10% 牛枝같 檢液를 첨가한 배양액을 사용하였다.

3) 세포 증식 측정

24-well plate dish (Nunc, Denmark)에 HeLa cell 1×10^4개를 접종하여 24시간 동안 배양한 후, 농도별 牛枝같 檢液을 처리하여 24, 48, 72시간 배양한 후에 tryphan blue (Sigma, USA)로 염색하여 세포 증식을 측정하였다.

4) 유도 세포 분석

농도별 牛枝같 檢液를 처리한 HeLa cell을 trypsin으로 처리. 분리한 후 이를 원심분리하여 1 ml PBS 용액에 resuspension하였다. 여기에 intracellular caspase detection kit인 ApoStat antibody를 10 μl 가하여 30분간 37 ℃ 배양기에 서 배양한 후 PBS로 세척하였다. 이를 0.5 ml PBS 용액에 녹인 후 BD FACS vantage (Becton & Dickinson, USA)로 분석하였다.

5) Caspase-3 활성 측정

세포사멸의 핵심적인 역할을 하는 caspase-3의 활성을 측정하기 위해 caspase-3 ELISA kit (R&D system, USA)를 이용하였다. 농도별 牛枝같 檢液을 처리한 HeLa cell을 1,000 rpm에서 4분간 원심분리한 후, 100 μl의 lysis buffer를 넣어 단백질을 추출하였다. 추출한 단백질을 2~4 mg/ml의 농도로 50 μl가 되게 하여 96-well flat plate에 분주하고, 50 μl의 2X running buffer와 1% DTT solution을 가했다. 5 μl의 caspase-3 colorimetric substrate를 넣은 후 37 ℃에서 2시간 동안 반응시켜 405 nm 파장에서 흡광도를 측정하였다.

6) DNA fragmentation 측정

농도별 牛枝같 檢液를 처리한 HeLa cell을 수거하여 triton-X 100 (Sigma, USA)을 첨가한 lysis buffer 1 ml로 분쇄하였다. 이를 13,000 rpm에서 10분간 원심분리하여 상층액만 취한 후 10 μl의 5 M NaCl과 2-propanol을 첨가하여 DNA를 응축한 후 13,000 rpm에서 10분간 원심분리하여 DNA를 추출하였다. 추출 DNA를 2% agarose gel에 70 V로 1시간 30분 동안 전기영동하여 세포사멸에 의하여 유도되는 DNA fragmentation을 관찰하였다.

7) 세포 활성 측정

96-well plate에 HeLa cell 5×10^4개를 접종하고 24시간 동안 배양한 후 농도별 牛枝같 檢液을 처리하여 24, 48, 72시간 동안 배양하였다. 이후 2,3-Bis (2-methoxy4-nitro-5-sulfophenyl)-2H tetrazolium-carboxanilide inner salt (JBI, Korea, 이하 XTT)와 phenazine methosulfate (JBI, Korea: 이하 PMS)를 배양액의 20%가 되게 하여 4시간 동안 HeLa cell에 처리하였다. XTT와 PMS 처리 후 450 nm 파장의 spectropho
통계는 SPSS ver 11.5를 이용하여 one-way ANOVA로 분석하였고, 유의한 (p < 0.05) 것으로 판단될 경우 Tukey's B법으로 multiple comparison test를 실시하였다.

III. 결과

1. 세포 증식에 미치는 영향

半枝蓮 헬라세포의 경우 24시간 배양 후 헬라 세포의 세포 증식은 17%로 대조군 1.67배, 5% 헬라세포가 0.83배, 10% 헬라세포가 0.53배로 대조군의 2.00배에 비하여 유의한 증식 억제 (p < 0.05)를 나타내었다.

48시간 배양 후 헬라 세포의 세포 증식은 17%로 대조군 1.33배, 5% 헬라세포가 0.33배, 10% 헬라세포가 0.10배로 대조군의 4.67배에 비하여 유의한 증식 억제 (p < 0.05)를 나타내었다.

72시간 배양 후 헬라 세포의 세포 증식은 17%로 대조군 2.00배, 5% 헬라세포가 0.17배, 10% 헬라세포가 0.05배로 대조군의 10.33배에 비하여 유의한 증식 억제 (p < 0.05)를 나타내었다 (Table 1. Fig. 1).

Fig. 1. Inhibitory effect on cell proliferation in Scutellaria barbata D. Don-treated HeLa cells in vitro

Control: Group with 2% FBS
Sample 1: Group with 2% FBS and 1%
Scutellaria barbata D. Don solution
Sample 2: Group with 2% FBS and 5%
Scutellaria barbata D. Don solution
Sample 3: Group with 2% FBS and 10%
Scutellaria barbata D. Don solution
Table I. Inhibitory Effect on Cell Proliferation in *Scutellaria barbata* D. Don-treated HeLa Cells In Vitro

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Initial concentration of Hela cells (×10^5 cell/cm^2)</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1</td>
<td>2.00±0.00(^{a,b})</td>
<td>4.67±0.58(^a)</td>
<td>10.33±1.15(^a)</td>
</tr>
<tr>
<td>(n=3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 1</td>
<td>1</td>
<td>1.67±0.58(^a)</td>
<td>1.33±0.58(^b)</td>
<td>2.00±1.00(^b)</td>
</tr>
<tr>
<td>(n=3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td>1</td>
<td>0.83±0.29(^b)</td>
<td>0.33±0.15(^c)</td>
<td>0.17±0.06(^c)</td>
</tr>
<tr>
<td>(n=3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 3</td>
<td>1</td>
<td>0.53±0.25(^b)</td>
<td>0.10±0.09(^c)</td>
<td>0.05±0.04(^c)</td>
</tr>
<tr>
<td>(n=3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value(^3)</td>
<td></td>
<td>p<0.05</td>
<td>p<0.05</td>
<td>p<0.05</td>
</tr>
</tbody>
</table>

1: Mean±standard deviation
2: The same letters indicate non-significant difference between groups based on Tukey's B multiple comparison.
3: Statistical significances were tested by ANOVA.
Control: Group with 2% FBS
Sample 1: Group with 2% FBS and 1% *Scutellaria barbata* D. Don solution
Sample 2: Group with 2% FBS and 5% *Scutellaria barbata* D. Don solution
Sample 3: Group with 2% FBS and 10% *Scutellaria barbata* D. Don solution

2. 流細胞 分析 結果

24時間 養液 に caspase 活性を測定した結果 従来値は 22.44%に抑えられていた。半枝蓮 植物群の結果は 1%, 5%, 10% 植物群すべて 25.05%, 48.78%, 37.34%で測定され 従来値に比べて増加した。

48時間 養液 に caspase 活性を測定した結果 従来値の平均値を測定した結果 従来値は 9.46%で測定された。半枝蓮 植物群の結果は 5% 植物群で 18.43%で 従来値に比べて増加した。

72時間 養液 に caspase 活性を測定した結果 従来値の平均値を測定した結果 従来値は 8.31%で測定された。半枝蓮 植物群の結果は 5%, 10% 植物群で増加した 15.99%, 12.28%で測定され 従来値に比べて増加した (Table II. Fig. 2).

Table II. Activated Caspase Expression in *Scutellaria barbata* D. Don-treated HeLa Cells by FACS Analysis

<table>
<thead>
<tr>
<th>Subjects</th>
<th>% of HeLa cells with activated caspase expression after culturing for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 hr</td>
</tr>
<tr>
<td>Control</td>
<td>22.44</td>
</tr>
<tr>
<td>Sample 1</td>
<td>25.05</td>
</tr>
<tr>
<td>Sample 2</td>
<td>48.78</td>
</tr>
<tr>
<td>Sample 3</td>
<td>37.34</td>
</tr>
</tbody>
</table>

Control: Group with 2% FBS
Sample 1: Group with 2% FBS and 1% *Scutellaria barbata* D. Don solution
Sample 2: Group with 2% FBS and 5% *Scutellaria barbata* D. Don solution
Sample 3: Group with 2% FBS and 10% *Scutellaria barbata* D. Don solution

51
3. Caspase-3 활성에 미치는 영향

24시간 배양 후 HeLa cell의 caspase-3 활성도를 조사한 결과 대조군은 0.0846 으로 측정되었다. 牛枝蓮 植液群의 경우는 1%, 5%, 10% 植液群 모두 각각 0.0659, 0.0540, 0.0750으로 측정되어 대조군에 비하여 감소하였다.

48시간 배양 후 HeLa cell의 caspase-3 활성도를 조사한 결과 대조군은 0.0901 로 측정되었다. 牛枝蓮 植液群의 경우는 1%, 5%, 10% 植液群 모두 각각 0.0770, 0.0778, 0.0876으로 측정되어 대조군에 비하여 감소하였다.

72시간 배양 후 HeLa cell의 caspase-3 활성도를 조사한 결과 대조군은 0.1088 로 측정되었다. 牛枝蓮 植液群의 경우는 1%, 5%, 10% 植液群 모두 각각 0.0600, 0.0723, 0.0765로 측정되어 대조군에 비하여 감소하였다 (Table III, Fig. 3).

Table III. Caspase-3 Activity in *Scutellaria barbata* D. Don-treated HeLa Cells

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Caspase-3 activity of HeLa cells after culturing for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 hr</td>
</tr>
<tr>
<td>Control</td>
<td>0.0846</td>
</tr>
<tr>
<td>Sample 1</td>
<td>0.0659</td>
</tr>
<tr>
<td>Sample 2</td>
<td>0.0540</td>
</tr>
<tr>
<td>Sample 3</td>
<td>0.0750</td>
</tr>
</tbody>
</table>

Control: Group with 2% FBS
Sample 1: Group with 2% FBS and 1% *Scutellaria barbata* D. Don solution
Sample 2: Group with 2% FBS and 5% *Scutellaria barbata* D. Don solution
Sample 3: Group with 2% FBS and 10% *Scutellaria barbata* D. Don solution

Fig. 3. Caspase-3 activity in *Scutellaria barbata* D. Don-treated HeLa cells

Control: Group with 2% FBS
Sample 1: Group with 2% FBS and 1% *Scutellaria barbata* D. Don solution
Sample 2: Group with 2% FBS and 5% *Scutellaria barbata* D. Don solution
Sample 3: Group with 2% FBS and 10% *Scutellaria barbata* D. Don solution
4. DNA fragmentation에 미치는 영향

상이한 농도의 半枝蓮을 처리한 결과 24시간, 48시간 및 72시간 동안 HeLa cell의 DNA fragmentation은 관찰되지 않았다 (Fig. 4).

Fig. 4. DNA fragmentation in Scutellaria barbata D. Don-treated HeLa cells

5. 细胞活性에 미치는 影響

세포활성도를 XTT assay로 확인한 결과 24시간 배양 후 대조군의 HeLa cell의 세포활성도는 0.45±0.12로 측정되었다. 半枝蓮 檢液群의 경우는 5%와 10% 檢液群에서 각각 0.25±0.13와 0.09±0.01로 측정되어 대조군에 비하여 유의한 감소 (p<0.05)를 나타내었다.

48시간 배양 후 대조군의 HeLa cell의 세포활성도는 0.69±0.05로 측정되었다. 半枝蓮 檢液群의 경우는 10% 檢液群에서만 0.10±0.01로 측정되어 대조군에 비하여 유의한 감소 (p<0.05)를 나타내었다.

72시간 배양 후 대조군의 HeLa cell의 세포활성도는 0.68±0.07로 측정되었다. 半枝蓮 檢液群의 경우는 5%와 10% 檢液群에서 각각 0.49±0.14와 0.12±0.01로 측정되어 대조군에 비하여 유의한 감소 (p<0.05)를 나타내었다 (Table IV. Fig. 5).

<table>
<thead>
<tr>
<th>Subjects</th>
<th>XTT activity of HeLa cells after culturing for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 hr</td>
</tr>
<tr>
<td>Control</td>
<td>0.45±0.12<sup>a</sup></td>
</tr>
<tr>
<td>Sample 1</td>
<td>0.47±0.12<sup>b</sup></td>
</tr>
<tr>
<td>Sample 2</td>
<td>0.25±0.13<sup>c</sup></td>
</tr>
<tr>
<td>Sample 3</td>
<td>0.09±0.01<sup>c</sup></td>
</tr>
</tbody>
</table>

1: Mean±standard deviation
2: The same letters indicate non-significant difference between groups based on Tukey's B multiple comparison.
3: Statistical significances were tested by ANOVA.

Control: Group with 2% FBS
Sample 1: Group with 2% FBS and 1%
Scutellaria barbata D. Don solution
Sample 2: Group with 2% FBS and 5%
Scutellaria barbata D. Don solution
Sample 3: Group with 2% FBS and 10%
Scutellaria barbata D. Don solution

6. MAP kinase活性에 미치는 影響

24시간 배양 후 HeLa cell의 MAP
 kinase 활성을 조사한 결과 대조군은 72522.02 CNT/mM로 측정되었고, 1%, 5%, 10% 半枝蓮 植物群의 MAP kinase 활성을 각각 52644.74 CNT/mM, 55715.40 CNT/mM, 42286.01 CNT/mM로 측정되었다.

48시간 배양 후 HeLa cell의 MAP kinase 활성을 조사한 결과 대조군은 71083.89 CNT/mM로 측정되었고, 1%, 5%, 10% 半枝蓮 植物群의 MAP kinase 활성을 각각 57338.97 CNT/mM, 50360.65 CNT/mM, 39421.13 CNT/mM로 측정되었다.

72시간 배양 후 HeLa cell의 MAP kinase 활성을 조사한 결과 대조군은 70753.59 CNT/mM로 측정되었고, 1%, 5%, 10% 半枝蓮 植物群의 MAP kinase 활성을 각각 34955.92 CNT/mM, 38705.52 CNT/mM, 38896.87 CNT/mM로 측정되었다 (Table V, Fig. 6, 7, 8).

Table V. MAP Kinase Activity in Scutellaria barbata D. Don-treated HeLa Cells

<table>
<thead>
<tr>
<th>Subjects</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>72522.02</td>
<td>71083.89</td>
<td>70753.59</td>
</tr>
<tr>
<td>Sample 1</td>
<td>52644.74</td>
<td>57338.97</td>
<td>34955.92</td>
</tr>
<tr>
<td>Sample 2</td>
<td>55715.40</td>
<td>50360.65</td>
<td>38705.52</td>
</tr>
<tr>
<td>Sample 3</td>
<td>42286.01</td>
<td>39421.13</td>
<td>38896.87</td>
</tr>
</tbody>
</table>

Control: Group with 2% FBS
Sample 1: Group with 2% FBS and 1%
Scutellaria barbata D. Don solution
Sample 2: Group with 2% FBS and 5%
Scutellaria barbata D. Don solution
Sample 3: Group with 2% FBS and 10%
Scutellaria barbata D. Don solution

IV. 考察

子宮頸部癌의 증상은 隐道出血 特히
性交時の 輕한 緊結合、直腸粘膜・脹
入・炎症など、耳鼻、喉頭等、内臓
下部、消化器、血液等、の他、各

Fig. 6. GAPDH analysis for quantitative PCR

Fig. 7. MAP kinase activity of HeLa cells treated with Scutellaria barbata D. Don solution

Fig. 8. MAP kinase activity in Scutellaria barbata D. Don-treated HeLa cells

Control: Group with 2% FBS
Sample 1: Group with 2% FBS and 1%
Scutellaria barbata D. Don solution
Sample 2: Group with 2% FBS and 5%
Scutellaria barbata D. Don solution
Sample 3: Group with 2% FBS and 10%
Scutellaria barbata D. Don solution

《黃帝内經·骨空論》31에 '任脈為病, 男
子宮頸部癌에 대한 연구로는 韓国 2018 cell 에 대하여 농도별 세포 독성과 형태학적 변화에 대한 연구13와 U937 암세포에 대한 세포 독성, 세포사멸 및 cell cycle에 관한 연구29는 있으나 HeLa cell을 이용하여 농도별 치료에 따른 시간별 세포 활성을 관찰한 결과, 세포사멸의 신호전달효소인 caspase에 대한 관찰은 아직까지 보고된 바 없다.

이에 저자는 清熱解毒, 鞏瘡止痛의 효과가 있는 半枝蓮이 子宮頸部癌 세포인 HeLa cell에 미치는 작용을 알아보고자 하였다. HeLa cell의 세포사멸 抑制와 농도별 세포 사멸, caspase-3 활성, DNA fragmentation, 細胞活性 및 RT-PCR을 통해 MAP kinase 2018을 관찰하였다.

HeLa cell에 半枝蓮 植液을 상하한 농도로 처리하여 각각 24시간, 48시간 및 72시간 동안 배양하면서 세포의 增殖을 측정한 결과 24시간 배양하였을 경우 5%와 10% 植液群에서 두드러진 세포증식 억제효과를 나타내었다. 48시간, 72시간 배양에서도 植液群이 대조군에 비하여 유의한 감소를 나타내었다. 이는의 실험에서 半枝蓮 植液是 子宮頸部癌 세포인 HeLa cell의 增殖을 抑制하는 작용이 있음을 확인할 수 있었고, 농도 및 시간의 존중으로 세포 增殖을 억제하는 것으로 나타났다.

세포배양시간과 半枝蓮 植液의 처리농도에 따른 apoptosis의 신호전달효소인 activated caspase 활성을 보이는 세포의 비율을 알아보기 위하여 농도별 세포의 응용을 이용하였다. 농도별 분석은 액체 속에서부터 benchmarks나 입자세포를 포함한 생물학적인 인자의 물리적 혹은 화학적
인 특성들의 측정하여, 여러 종류의 세포 표면 항원들, 세포 형질내에 존재하는 단백질, RNA, DNA, nuclear antigen, membrane potential 및 intracytoplasmic Ca$^{2+}$ 등을 정량적으로 측정 분석하게 된다. 세포사멸 과정에서 실행 경로의 활성화 과정에 관여하는 caspase는 세포 사멸을 활성화시키는 중요한 단백질 분해 효소이므로, 이 효소의 활성을 측정하여 세포사멸 정도를 파악할 수 있다. Caspase cystein protease cascade는 여러 생리적인 system에서 세포사멸의 주요 경로로 인식되어 왔으며, 세포사멸이 일어나는 경우 caspase-3는 세포사멸의 실행자 역할을 하는데, 어떤 종류의 자극에 도 활성화되는 주요 프로일로 알려져 있다. 이번 실험의 결과 24시간 배양 후, 세포사멸의 경우 1%, 5% 및 10%에서 대조군에 비해 상대적으로 높은 세포 사멸이 관찰되었다. 48시간 배양 후 5% 흡수계, 72시간 배양에서는 5%와 10% 흡수계에서 대조군에 비하여 세포 사멸이 증가하여, 半枝蓮 植椘은 HeLa cell의 사멸을 측정하는 것으로 보이며 24시간 배양시, 5% 농도에서 가장 효과적인 것으로 나타났다.

그러나 세포사멸에 주도적인 역할을 하는 caspase-3의 활성을 ELISA assay로 측정한 결과에서는 24시간, 48시간 및 72시간 배양의 경우 모두 농도에 관계없이 半枝蓮 植椘의 caspase-3 활성도가 대조군에 비하여 감소된 것으로 관찰되어 activated caspase 유전자 활성화는 상반된 결과를 나타내었다.

半枝蓮 植椘이 HeLa cell의 사멸에 미치는 영향을 구체적으로 알아보기 위해 HeLa cell에서 DNA를 추출하여 세포 사멸에 의하여 유도되는 DNA fragmentation을 관찰하였다. 신체를 구성하고 있는 기본단위인 세포는 조직의 활성성을 유지하기 위하여 세포분열과 죽음을 조절하는데 이중에서 농도적인 죽음을 apoptosis 또는 programmed cell death라고 한다. 이 과정 중 생화학적 변화는 형태적인 변화보다 먼저 일어나 핵산분해효소의 활성화는 규칙적으로 유전자를 절단하여 DNA는 다양한 크기의 절편을 형성하게 된다. 따라서 이것을 전기영동하면 여러 개의 DNA fragmentation들은 관찰할 수 있다.

그러나 24시간, 48시간 및 72시간동안 半枝蓮 植椘群은 1%, 5% 및 10% 농도로 처리한 HeLa cell에서 두었던 DNA laddering은 관찰되지 않았다. 즉, 半枝蓮 植椘은 子宮頸部癌 세포인 HeLa cell의 세포 사멸과 관련된 DNA fragmentation에는 영향을 주지 않는 것으로 사료된다.

HeLa cell의 세포 활성도의 예측치표인 XTT 활성도를 조사한 결과 24시간 배양의 경우 대조군에 비교하여 5%, 10% 흡수계에서 세포 활성도의 유의한 감소를 보였다. 48시간 배양 후는 10% 흡수계에서, 72시간 배양 후는 5%, 10% 흡수계에서 子宮頸部癌 세포의 활성도가 감소되는 것으로 관찰되었다. 이는 이 동③의 24시간 배양하였을 경우 농도가 증가함수록 자궁암세포에 대한 세포독성과 형태학적 변화가 두켰다는 결과와 일치하며 半枝蓮 植椘은 子宮頸部癌 세포인 HeLa cell의 활성도를 억제하여 子宮頸部癌 치료에 도움을 줄 것으로 사료된다.

MAP kinase (mitogen activated protein
kinase)는 세포 밖 신호가 세포 내에 존재하는 target 물질로 전달이 이루어지기 위해서 세포질에 존재하는 몇 개의 연속적인 단백질 인산화 효소들의 활성화 경로이다. 이 과정을 거쳐서 여러 유전자들의 발현을 변화시켜 세포가 성장, 분화, 발달, 세포 사멸 등의 다양한 반응을 일으키게 된다. MAP kinase는 세 개의 kinase들로 구성된 신호경로의 제일 맨 마지막에 위치하는 단백질 인산화 효소로서, 각각의 신호전달 경로 상에서 하나의 효소가 바로 다음 아래 위치에 존재하는 구성효소를 인산화하여 연속적으로 활성화시키게 된다.

MAP kinase 신호전달계의 역제인자는 MAP kinase 신호전달계를 통해 하여 염증이나 알레르기 등의 상태를 치료하게 되므로 MAP kinase의 활성은 세포 활동이 활발한 때 증가하고, 세포성장 지원 또는 사멸시 감소한다.

HeLa cell의 사멸 효과를 구체적으로 알아보기 위해, 핵 합체한 RNA를 이용하여, 신호전달의 세포인 HeLa cell의 MAP kinase 활성을 조사하였다. 24시간, 48시간 및 72시간 배양 후 검출에서 대조군보다 MAP kinase 활성이 감소되었을 것을 확인할 수 있었다. 이 실험의 결과에서 본 실험, 핵 합체한 RNA를 HeLa cell 대사에 직접적으로 작용하는 MAP kinase 신호전달계에 관여하여 MAP kinase 활성을 감소시켜 HeLa cell에 역제인자로 작용하는 것으로 사료된다. 그러나 그 외 배양 시간별로 일정한 규칙은 관찰되지 않았다.

이상의 실험 결과를 종합하여 본 실험, 핵 합체한 RNA를 HeLa cell의 세포 증식과 세포 활성도를 억제시키며 MAP kinase 활성을 감소시키고, 그 결과 세포사멸이 촉진되어 HeLa cell의 역제를 유도하는 것을 확인할 수 있었다.

V. 结論

半枝蓮이子宫頸部癌 세포인 HeLa cell에 미치는 영향을 알아보고자 상이한 농도의半枝蓮 檢液을 HeLa cell에 처리하여細胞増殖 역제효과, 细胞 分析를 통한 caspase 발현, caspase-3 活性, 백양細胞株의 活性을 알아볼 수 있는 지표인 DNA fragmentation 및 MAP kinase活性 등을 살펴본 결과 다음과 같은 결론을 얻었다.

1. 半枝蓮 檢液이 처리된 HeLa cell은 농도 의존적으로 細胞増殖이 억제되었 다.
2. HeLa cell에서 caspase 활성을 보이는 세포 비율을 측정한 결과 5% 半枝蓮 檢液群에서 가장 증가하였다.
3. 半枝蓮 檢液이 처리된 HeLa cell의 세 포 활성도는 24시간 및 72시간 배양 에서는 5%와 10% 농도에서, 48시간 배양에서는 10% 농도에서 대조군에 비하여 감소하였다.
4. 半枝蓮 檢液이 처리된 HeLa cell의 MAP kinase 활성은 대조군에 비하여 감소하였다.
5. 半枝蓮 檢液의 처리는 HeLa cell의 DNA fragmentation과 caspase-3 활성에 유의한 변화를 나타내지 않았 다.
이상의 결과를 종합하여 볼 때, 비정상적 한 화학물질의 증식 연속 및 증식억제 효과가 나타났으므로, 임상적 구조물질 치료에 유용하게 이용될 수 있을 것으로 사료된다.

[参考文献]

2. 대한산부인과학회, 부인과학 (제3판). 서울: 도서출판 칼빈서적 1997:924-925, 980-1027
3. 崔昇勳, 東醫腫瘤學. 서울: 杏林出版社 1995:229-234
5. 宋錫鎬, 宋炳基, 李京燮, 疼痛에 应用되는 軟骨破壊症과 加味歸土破壊症의 效能에 関한 研究. 慶熙醫學 1994:10(1):26-40
6. 崔永斗 등, 班玄丸과 抗癌剤의 併用投與가 子宮癌細胞 (HeLa)에 미치는 影響. 大韓韓方婦人科學會誌 1995:8(1):49-62
9. 박경미 등, 濟川煎이 子宮癌細胞 (HeLa cell)에 미치는 影響. 大韓韓方 婦人科學會誌 2003:16(2):161-176
10. 박종준 등, 六合湯이 子宮癌細胞 (HeLa cell)에 미치는 影響. 大韓韓 方婦人科學會誌 2003:16(3):128-146
11. 鄭宰鎬 등, 香稈丸이 子宮癌細胞 (HeLa cell)의 apoptosis에 미치는 影響. 大韓韓方婦人科學會誌 2004:17(2):11-26
15. 박영민 등, 自宮腔頸部癌세포에서 표고버섯의 in vitro 및 in vivo 항암 효과, apoptosis에 의한 18세포주의 성장억제. 한국식품과학회지 2004:36 (1):141-146
17. 閻正華. 中藥學. 北京: 人民衛生出版

31. 洪元植 編纂. 精校黃帝內經素問. 서울: 東洋醫學研究院 1985:209, 304

32. 吳謙. 醫宗金鑑. 서울: 大星文化社 1983:452-457

33. 張介賓. 景岳全書 婦人規. 서울: 法人文化社 1999:251-264

