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For the almost certainly convergent series S§,= ZV of independent random elements in

Banach spaces, by investigating tail series laws of large numbers, the rate of convergence of
the series &, to a random variable $ is studied in this paper. More specifically, by studying the

duality between the limiting behavior of the tail series 7,=5-8,.,= i V; of random variables

and that of Banach space valued random elements, an alternative way of proving a result of
the previous work, which establishes the equivalence between the tail series weak law of large

~ numbers and a limit law, is provided in a Banach space setting.
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random elements defined on a probability space

Let {V,,n>1} be a sequence of independent

INTRODUCTION {2,F,P} and taking values in a real separable
Banach space X with norm ||-ll. As usual, their partial

sums are denoted by S§,= ) ,V,n=1.

t=1
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Woyczynski [14]{15), Jain [7], Giné et al. [6], and
Etemadi [5] among others provided conditions under
which the series .5, converges almost certainly (a.c.) (to

a random element). When the series .S, converges a.c.

to a random element S, then (set & =0)

leS_SL~1: ZV;,'I’L% 1

=
is a well-defined sequence of random elements
(referred to as the tail series) with

T,—0a.c.

The sequence of random elements { V,, n = 1} is
said to obey the tail series weak law of large numbers
(WLLN) (resp., strong law of large numbers (SLLN))
with respect to the norming constants {b,, n =1}
if the tail series {7, n =1} is well defined and
for a given sequence of positive constants with
b,=o(1),

L_r,
b, oy
(resp., -gi—-)O a.c.). 2

In this paper, for independent summands of Banach
space valued random elements, we shall be concerned
with the rate in which S, converges to 5, or
equivalently, in which the tail series 7}, converges to 0.

Pioneering work on the limiting behavior of the tail
series {7, n > 1} was conducted by Chow and
Teicher [1] wherein they obtained a tail series law of

the iterated logarithm of independent random

variables. The tail series problem in Banach space 7

setting was investigated by Dianliang {3][4], Nam et al.
[11] and Hu et al. [12]. Also, Rosalsky and Rosenblatt
(13} provided conditions

sup|| T, ||

jzn P 0
b ®)

n

to hold for a given sequence of positive constants

{b,n=>=1}. When 0<b,{, Rosalsky and

Rosenblatt [13] observed that the tail series SLLN (2)

implies the limit law (3) and that (2) is indeed even

equivalent to the apparently stronger limit law
sup|| T |

22 — 0a.c.

@

Rather than taking the monotone decreasing

n

sequence of positive constants, let us employ the
sequence of positive constants {b,, n > 1} which is
quasi—-monotone decreasing in the sense that there
exists a positive constant C'< c© such that

b; < Cb, whenever j=zn =1 &)
(Of course if b, | , then (5) holds with C'= 1). Then,
for the quasi-monotone decreasing sequence of
positive constants {b,, n > 1} it follows from

sup {7, ||

u T,
gz < Csup.l.l_/_H
b jzn

that the tail series SLLN (2) implies the limit law (3)
and that (2) is indeed equivalent to the apparently
stronger limit law (4), thereby extending Rosalsky
and Rosenblatt's [13] observation to the wider class of
norming constants.

For an ac. convergent series of random variables,
Nam and Rosalsky [10] proved apropos of the tail
series of independent summands that the tail series
WLLN (1) and apparently stronger limit law (3) are
indeed equivalent when 0 < b, |, and they provided
an example showing that without the monotonicity
condition on {b,, n =1}, the tail series WLLN (1)
does not imply the limit law (3). This example reveals
that (1) does not necessarily imply (3) without the quasi
-monotonicity condition (5). It is important to note, in
the random variable case, that the key inequality used
in order to prove the Nam and Rosalsky [10]
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equivalence between (1) and (3) is the tail series
analogue of the classical Lévy inequality for partial
sums. As in the case of random variables, Nam et al’
[11] equivalence (Theorem 2 below) between (1) and (3)
in a Banach space setting can be reproved by employing
the tail series analogue (Theorem 1 below) of Lévy
inequality for random elements. As will become
apparent, the formulation and proof of the ensuing

Theorem 1 owe much to the work of Nam et al. [111.

Il. MAINSTREAM

Not only is Theorem 1 a. tail series analogue of the
Lévy inequality for Banach space valued fandom
elements, but it also an extension of tail series Lévy
mequality from the random variable case to the case of
Banach space setting, so it demonstrates the duality
between the limiting behavior of the tail series of
random variables and that of Banach space valued

random elements and it may be of separate interest.

Theorem 1. Let {V,,n =1} be a sequence o

independent and symmetric random elements in a real

separable Banach space with 2 V., converging ac

n=1

Then the tail series {T,= Y,V,n>=1} isa
Jj=n

well-defined sequence of random elements satisfying

P{supHTj” > s} < 2P{HT"[] 2 ghe>0.
jzn

In order to prove Theorem 1, Lemmas 1 and 2, which
are the classical Lévy inequality(see, eg., Laha and
Rohatgi [8]) for random elements taking values. in a

Banach space and a modification of it, are needed.

Lemma 1 (Laha and Rohatgi [8)). Let

{V,1<i<n} be a sequence of independent and

symmetric random elements in a real separable Banach

i
space. Then setting ;= Y, V;,1 <j<n,
=

Pmax

i< j<n

s |2 ef<2Pfs,|2 ¢} >0.

Lemma 2. Let { V;, k < i< n} be a sequence of

independent and symmetric random elements in a real
separable Banach space. Then setting

Su=NV,k<j<n,
1=j

S > ef<2P{s,

P%:nax
<j<n

Proof.  Set

j.n
o
SM =3V, A< j<n+l-k

i=l .

Note at the outset that
{Sj,n,j =k,..,n} = {Sj(.”),j =n+1-k,..1}.
Then for € > 0,

Pimax

<j<n

> g}= P{ max "Sj“'”

1< j<n+l-k

Sj o

> &}

IA

ZPi S'('ﬂ‘k” 2 g} (by Lemma 1)

e} o

IN

2p{s,,

_ Proof of Theorem 1. Let 1 < n < N< M. For

n<j< N, set

M
5}./1/: E V;-
i=j
Then

R e B L v



32 BIR2EHXSS|=2X] '06 Vol. 6 No. 5

©

Mox

1= mls e

Thus, the tail* series {7, =),

j=n

Von=1}
well-defined sequence of random elements. Observe that
for e >0, s

P

<I<N

T"”} = Ppax lim|ls, M”>£}(by ©)

Sij”>g}

Sul> <)

= Pilim max|

—% p<j<N

< hminf P

M0

7</<N

(by Theorem 8.1.3 of Chow and Teicher [2]
Sm ” > £ ;

<2liminf P{s, , | > ¢}

< liminf P{:nax
M- <j<M

(by Lemma 2)

<2 lir;j:p P{{SM[ “ pd g}

<2P|lim|s, | > ¢/
{(by Theorem 81.3 of Chow and Teicher [2])
=2p{r)2 2}

Letting N— yields
P{sup"T]. |> g} <2P{r,|> ¢}
jzn

Now, replace € by € — ;11— (for integer m > %) and

then the lemma follows by letting m— [

In Theorem 2 below, for a sequence of
quasi-monotone decreasing constants, Nam et al. [11]
extended Nam and Rosalsky’s [10] result which
pertained to the random variables case to the case of
Banach space valued random elements, by virtue of the
maximal inequality of Etemadi [5] in a Banach space

Theorem 2 (Nam et al. [111). Let { V, n > 1} be

a sequence of independent random elements in a real

separable Banach space with Z V.. converging ac

n=1

ZVn>1

{b, n =1} be a sequence of positive constants

and tail series Zl and let

which is quasi-monotone decreasing in the sense that
(5) holds. Then the tail series WLLN (1) and the
limit law (3) are equivalent

Recalling that, in the random variable case, when

b, . the key inequality used in order to prove the Nam
and Rosalsky [10] equivalence between (1) and (3) is the
classical Lévy inequality, Theorem 2 can be reproved by
hiring Lévy inequality (Lemma 1) in a Banach space
setting. As discussed in Nam et al. [11], the proof of the
theorem introduces a symmetrization procedure.

Proof. Since (3) clearly. implies (1), it need to be

established that (1) implies (3). Observe at the outset
that (see, e.g., Loéve [9))

T

—"] —0.

bn

Then for arbitrary € > 0, there exist an integer /V,
such that

e 2

,,) 2C for all m = N,

rll_f50> med[

n

Thereby

Thus, for all n = N,
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s

: il [u u]
s eleplen T8 C sup med
b b, 2"

n Jzn /'

supT| [ur |\]
=P g T C sup med)| >~
b jzn 2

n J

{g [uf 1, me:unrq%}

&b
< P<sup)T, "}
{jz»ﬂ / 2

(since b; < Cb,)

5 &, }
2
(by Symmetrization inequality of Loéve [9])

&b
< s J
_4P{T’ 2 } (by Theorem 1)

<8P 7, >&
b, 4

(by Weak symmetrization inequality of Loéve [9])
=o(1) (by (1)). O

ez

7}:

< 2P{sup
jzn
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