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Abstract

Alternative splicing (AS) is an important mechanism of
producing transcriptome diversity and microarray techniques
are being used increasingly to monitor the splice variants.
There exist three types of microarrays interrogating AS
events-junction, exon, and tiling arrays. Junction probes
have the advantage of monitoring the splice site directly.
Johnson et al,, performed a genome-wide survey of
human alternative pre-mRNA splicing with exon junction
microarrays (Science 302:2141-2144, 2003), which
monitored splicing at every known exon-exon junctions
for more than 10,000 multi-exon human genes in 52
tissues and cell lines. Here, we describe an algorithm to
deduce the relative concentration of isoforms from the
junction array data. Non-negative Matrix Factorization
(NMF) is applied to obtain the transcript structure
inferred from the expression data. Then we choose the
transcript models consistent with the ECgene model of
alternative splicing which is based on mRNA and EST
alignment. The probe-transcript matrix is constructed
using the NMF-consistent ECgene transcripts, and the
isoform abundance is deduced from the non-negative
least squares (NNLS) fitting of experimental data. Our
method can be easily extended to other types of
microarrays with exon or junction probes.
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Introduction

Microarrays are increasingly used to study alternative
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splicing recently. The major advantage is that splicing
pattern of numerous exons can be monitored simultaneously
(Shoemaker et al, 2001). It is the most promising
technigue that can show the transcript variation due to
alternative splicing in various tissues, developmental,
and pathological conditions (Xu et al., 2002; Hu et al.,
2002). Proper interpretation can give information on
transcript structure and expression pattern of genes in an
efficient way. However, there is no standard in manufacturing
arrays and in interpreting the data yet.

To monitor alternative splicing events with microarray
technique, one needs special probe design that can
report whether specific exons or splice sites are present
in the transcript or not. Arrays of this type are called
'splice arrays' and oligonucleotides are typically used as
probe sequences. Splice arrays can be further classified
into three sub-groups - junction, exon, and tiling array as
shown in Fig. 1.

Exon probe sequences are part of a single exon,
thereby manifesting expression of the corresponding
exon. Multiple probes are necessary to identify alternatively
spliced exons using exon probes. Its main disadvantage
would be that exact splice sites cannot be obtained. On
the other hand, junction probes consist of concatenation
of two neighboring exons. Presence of each splice site is
directly examined and any variation in the splice site is
reflected in the probe intensity. However, the sequence
composition is fairly limited since they cannot be far from
the splice site. Hybridization efficiency might be different
for each probe, which is a difficult problem to overcome
in analyzing experimental result. Recent trend is to use
both the junction and exon probes for reliable prediction
of splice site variation (Pan et al., 2004; Fehlbaum et al.,
2005; Ule et al., 2005).

Tiling array is collection of probes reflecting the
genomic map. Original purpose of the tiling array was
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Fig. 1. Various types of splice arrays. Design principles for
junction, exon and tiling probes are illustrated.
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interrogating whether a specific part of the genome is
transcribed or not. Since it is unbiased mapping of
transcription, it can be used to monitor alternative splicing.
The main problems are cost and resolution. Researchers
at the Affymetrix Inc. reported tiling array experiment for
chromosomes 21 and 22 at 35 nt. resolution as early as
in 2002 (Kampa et al., 2004). Their recent update includes
10 chromosomes at 5 nt. resolution (Cheng et al., 2005).
Even though it cannot be applied for general purpose
due to high cost, the experimental data can be a reference
point for transcription with additional tissue data.

Johnson et al. performed a junction array experiment
that covers ~10,000 human RefSeq genes in 52 tissues
and cell lines (Johnson et al., 2003). Each probe sequence
consists of 36 nucleotides from two adjacent exons (last
18-mer in the preceding exon and the first 18-mer in the
following exon) and a linker sequence. Every exon-exon
junction within RefSeq is taken into consideration in
designing the probe sequences. Resulting hybridization
reflects the splice-site variation owing to AS. For example,
exon skipping of the 8-th exon produces reduced probe
intensity for two adjacent probes at donor and acceptor
splice sites of the exon 8.

Even though Johnson et al., demonstrated successfully
that microarray could be used to study alternative
splicing at genome-wide level, their analysis is fairly
limited in several aspects. The most important drawback
is that their interpretation lacks any quantitative prediction
of isoform concentration. They intentionally avoided building
any transcript models from the experimental data and
just examined if any probe intensity is below expectation,
which is a good indication of alternative splicing event.

Predicting transcript structure and abundance for
each isoform simultaneously would be the most important,
but truly demanding task in the presence of experimental
noise. A research group at the Affymetrix inc. and the
University of California at Santa Cruz developed a
method to determine the relative abundance of known
splice variants through a maximum likelihood estimation
framework (Wang et al., 2003). Their analysis assumes
that splice variants and their gene structure present in
the sample are known. No attempt to detect any novel
splice variants was made.

Here, we describe an algorithm to deduce the relative
concentration of isoforms from the junction array data.
First, Non-negative Matrix Factorization (NMF; Lee and
Seung, 1999) is applied to obtain the transcript structure
inferred from the expression data. Then we choose the
transcript models consistent with the ECgene model of
alternative splicing since the transcript models predicted
from NMF are often unreliable. ECgene transcripts have
mRNA or EST sequences as a supporting evidence. The

probe-transcript matrix is constructed using the resulting
ECgene transcripts and the isoform abundance is
deduced from the non-negative least squares (NNLS)
fitting of experimental data. Our method takes the
non-negative nature of concentration into account
explicitly, which gives dramatic difference from other
decomposition-based methods. It can be easily extended
to other types of microarrays with exon or junction
probes (e.g. Affymetrix’s exon chips).

Methods

Datasets

Johnson et al.,'s junction-array data (GSE740) were
downloaded from the GEO website (Gene Express
Omnibus, http://www.ncbi.nim.nih.gov/geo). It contains
more than 10,000 multi-exon human genes in 52 tissues
and cell lines. Oligonucleotide probes were placed at
every exon-exon junction in each transcript. The data
covers 105,398 probes, 10,274 genes, 11,138 GenBank
accession and 1,646 genomic contigs.

Every probe sequence should be mapped onto the
splice junctions in the ECgene transcripts. We compared
the gene symbols, GenBank accession numbers, and
explicit sequences used in GSE740 with the ECgene
annotations. The resulting gene symbol, GenBank
accession, ECgene ID, transcript ID, exon number, and
probe sequences were stored in the MySQL database.
Using the latest ECgene version 1.2, we were able to
map 95,945 probes out of 105,389 probes in GSE740.
Some RefSegs could not be aligned against the genome
with good quality.

One subtle point is worth mentioning. Johnson et al.,
made probes for each RefSeq. In other words, if a gene
had more than two RefSeqs representing splice variants,
junction probe sequences can be redundant. We
searched all redundant probe sequences and took the
average value in the subsequent steps.

Algorithmic details

Problem setup: The experimental data can be represented
as an expression matrix E whose element E is the
hybridization intensity of probe pfor tissue t. The expression
value for each probe depends on several factors including
isoform abundance, isoform structure and probe affinity.
The relation can be written as

Ep= ZMpXs (1)

E,+: probe intensity matrix of probe p for tissue type t
M, : probe-transcript matrix of probe p for transcript



model (isoform) i
Xt : transcript abundance matrix of transcript medel /
in tissue type t

Xit is the abundance (i.e. concentration) of isoform i in
tissue . The matrix M is the probe-transcript matrix whose
element M, represents the presence of probe sequence
p in isoform i. My is 1 if the probe sequence is part of
mRNA sequence for isoform i. In matrix representation,
Eq. (1) can be rewritten as

E = MX 2
Fig. 2 shows an example of matrix setup for a case with
three transcript models.

The goal is to deduce the abundance of each isoform
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Fig. 2. Example of matrix setup for a gene with three transcript
models. (a) transcript structure and probe positions (b) matrix
representation. Concentration and expression values are given
as vectors for this case of a specific tissue. They become multi-
dimensional matrices for the experiment with various tissues.
Solving this linear equation for this hypothetical case gives a =
5,b=0, c=200.
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(X) from the expression data (E). This is not an easy task
since (i) we do not have the full catalog of transcripts (i.e.
splice variants), (ii) all parameters in Eq. (2) are non-negative.
Without the first problem, the NNLS (non-negative least
squares) fitting method or the maximum likelihood
optimization (Wang et al., 2003) can be used to obtain the
transcript abundance in various tissues. They take the
non-negative nature of abundance explicitly.

Our method, named as the “isoAbundance” algorithm,
combines NMF and NNLS procedures to obtain reliable
transcript models and their relative concentration in each
tissue. Fig. 3 shows a brief flowchart of the algorithm.

Data Pre-processing: Before any data processing, we
filtered bad or non-informative probes. Probes whose
mean natural log intensities across 52 tissues were less
than 0.65 or larger than 11 were flagged as dark and
saturated, respectively. Probes with constant intensity
were also removed since they are likely due to cross-
hybridization.

Selection of putative transcripts using NMF: Non-negative
Matrix Factorization was applied to solve Eq. (2). Original
version of NMF was to decompose a matrix V = WH where
V, W, H are non-negative matrices (Lee and Seung,
1999). This is exactly the same situation as in Eq. (2).
Non-negativity constraint makes NMF distinguished from
other methods such as the principal component analysis
(PCA) or NMF allows a parts- based representation
because only additive combinations are allowed. NMF
applied to decompose the expression matrix E = MX,
allows the extraction of hidden localized patterns such as
alternative splicing of exons. Applying NMF to the
expression matrix of dimension (px#), we obtain two
non-negative factors. Matrix W has size (pxi), which each
of the i/ columns defining the presence of probes in the
isoform . Matrix H has size (ixf), representing the
expression level of isoform iin the tissue t. Therefore W

1. Data Pre—processing
- filtering bad spots

|

2. Isoform Modeling
- NMF factorization to deduce approximate transcript structure
~ choose ECgene transcripts consistent with NMF solution

|

3. Isoform Abundance
-~ NNLS fitting

Fig. 3. Flow chart of the algorithm.
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and H are equivalent to the probe-transcript matrix M and
the transcript abundance matrix X, respectively.

However, we find that NMF method has many
drawbacks to apply for the junction array data. Iterative
optimization is not always robust and may fail occasionally.
ltis also sensitive to the experimental noise. NMF solution
to Eq. (2) may not be unique - i.e. random seeding may
give different combinations of W and H. Furthermore,
many transcript models inferred from NMF factorization
have unrealistic structure. In an effoit to take these
problems into consideration, we decided to keep transcripts
whose exon structure is consistent with any ECgene
models. Since ECgene is based on genomic alignment of
mRNA and EST sequences, this ensures that each
isoform mode! in subsequent sections has supporting
evidence of clones. We simply examined the absent
probes from the NMF-derived probe-transcript matrix to
test the identity of NMF and ECgene models.

NNLS optimization to obtain isoform abundance: The
probe-transcript matrix is constructed using the resulting
ECgene transcripts and the isoform abundance is
deduced from the non-negative least squares (NNLS)
fitting of experimental data. NNLS method solves
“Ax=b’ in a least squares sense, under constraint “vector
x has non-negative elements’. A is equivalent to the
probe-transcript matrix. Two vectors (x and b) are
isoform abundance and its expression intensity in a
specific tissue, essentially being a column of X and E
matrices, respectively. The solution corresponds to the
relative abundance of isoforms.

A subtle problem of weighting arises in NNLS fitting.
Since most exons are constitutive (not showing AS
event), there exist only limited number of probes with
information on AS events. It is desirable to increase the
weight of those informative (AS-related) probes. For
simplicity, we substituted all constitutive probes with a
hypothetical probe whose expression was just the
average value. This allows that NNLS algorithm sensitively
picks up the variation in isoform abundance.

Results and Discussion

We applied our method to three genes (OCRLA1,
HMGCR, and APP) whose RT-PCR and sequencing
results were reported by Johnson et al., For these case
studies, we used the ECgene transcripts whose gene
structure is the same with those in the Johnson et al.'s
paper.

OCRL1 gene is known to have two isoforms as shown
in Fig. 4A. Long isoform (NM_000276) is expressed in
retina and fetal brain, whereas a short form (NM_001587)

is observed in kidney that lacks a 24-nt. exon. They
confirmed the expectation from junction array data with
RT-PCR experiment and sequencing. Our result agrees
well with the experimental result. The intersection of gene
model from the NMF and the ECgene transcripts found 2
isoforms. Variant #2 and #3 correspond to NM_000276
and NM_001587, respectively. Table 1 shows the summary
of our algorithm. Long isoform is expressed in all three
tissues, whereas the short one is pre-dominant form in
kidney and fetal brain.

Johnson et al., also showed that the junction array
data could predict novel isoforms for the case of HMGCR
gene. Only one isoform was known at that point. Their
junction array data clearly indicated alternative splicing
of the 13-th exon as indicated in Fig. 4B. Their RT-PCR
result for this gene showed two bands in most of the 44
tissues. Our analysis predicted that two isoforms were
present in 46 tissues out of 52 tissue (data not shown).
Furthermore, NMF and ECgene suggest another novel
transcript with different first exon (isoform #1). The reality
of this isoform should be

Case study on the APP gene is rather complicated.
Johnson et al., found that it had three isoforms shown in
Fig. 4C. Two isoforms (NM_000484 and X06989) are
present in most nonneuronal samples, e.g., melanoma
and lung carcinoma. Exon 8 of NM_000484 is frequently
missing in all brain tissues (X06989). Additional exon 7 of
NM_000484 is skipped in fetal brain tissue (Y00264).
Our analysis in Table 2 seems substantially different
from their result. NMF and ECgene suggested a novel
isoform which is exactly the same with NM_000484
except the first exon. This can happen if the probe
intensity for the junction between the first and second

Table 1. The relative abundance of gene OCRL1 in various
tissues

Relative abundance
(variant's conc./total conc.)

variant tissue|  Fetal brain Kidney Retina
#2 (NM_000276) 20.6 490.3 1583.8
#3 (NM_001587) 147.4 1031.7 0.0

Table 2. The relative abundance of isoforms in APP gene

Relative abundance
(variant's conc./total conc.)

Brain Fetal  Lung
variant amygdala Cerebellum brain  carcinoma

#4 (Newisoform) | 0.0 0.0  4669.3 660.0 154807 8604.6
#5(NM_000484) (1186 3843 00 00 00 0.0
#6(X06989) (1951 3412 0.0 4302 44482 3082
#7(Y00264) (564 00 90616 4780 67072 8387.0

tissue

Brain Melanoma
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Fig. 4. Transcript structure used in the case studies. A OCRL1 gene. The variant #2 and #3 correspond to the RefSeq NM_000276
and NM_001587, respectively. B HMGCR gene. The variant #5 is the RefSeq NM_000859. The variant #2 is an unknown variant
whose 13th exon (indicated as boxes) is being skipped. This exon skipping is obvious in the lower magnified view. C APP gene. It
has three known splice variants (#5, #6, #7) whose accession numbers are NM_000484, X06989 and Y00264, respectively. The
third variant (#1 of HMGCR gene) in figure B and the first variant (#84 of APP gene) in figure C are novel isoforms that both NMF

and ECgene models predicted.

exons of NM_000484 is low compared to other constitutive
probes. It remains to be seen if this new isoform is real or
it should be regarded as equivalent to the RefSeq
NM_000484. Results for melanoma and lung carcinoma
do not agree well with the RT-PCR result.

The APP case clearly indicates that our aigorithm
requires some improvements. There are many factors to
take into consideration. Different hybridization efficiency
of junction probes is the most serious problem. Conventional
probe sequences are designed to have similar melting
temperatures. Since junction probes have limited freedom
of sequence selection, their hybridization efficiency may
be vastly different. Method to estimate hybridization
efficiency for each probe is essential for successful
interpretation of junction array data. Observed probe
intensities for constitutive exons could give some idea on
different hybridization efficiency of each probe. Matrix W
from NMF calculation should reflect the hybridization
efficiency too in ideal situation. One can calculate the

melting temperature from the probe sequence and may
be able to estimate the hybridization efficiency theoretically.
One of these methods or an entirely different approach is
imperative to overcome the problem of different hybridization
efficiency in junction or exon array data.

Another critical step is the proper selection of
isoforms. Almost all methods analyzing splice array data
predict alternative splicing at the exon level. For
example, they can predict a specific event of exon
skipping fairly accurately. However, concurrent events at
several exons should be correlated to predict gene
expression at the isoform level. It would be quite
challenging since both AS and different hybridization
affects the probe intensities simultaneously. No method
is advanced enough to deduce the transcript structure
from the microarray data yet. An iterative procedure that
learns the hybridization affinity and AS events alternately
may be developed to solve this problem.

The problem of isoform selection can be alleviated as
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the catalog of splice variants becomes more complete.
RefSeq and Ensembl are the two main resources for
gene structure. Databases focused on alternative
splicing comprise the ASD, AceView and ECgene.
Adjusting weights for constitutive and alternative exons
might be helpful to emphasize the effect of AS in the
NNLS fitting step.

Recently, several labs are trying to identify AS events
using the so-called splice array that contains junction,
exon and intron intron probes for a single splice event
(Pan et al., 2004; Fehlbaum et al., 2005; Ule et al., 2005).
Notably, Shai et al., developed GenASAP that predicted
the levels of AS and the hybridization profiles simultaneously
using Bayesian learning in an unsupervised probability
model (Shai et al., 2005). Even though it is limited to
detect exon skipping events only, its ability to learn the
hybridization affinity may be applied to augment the NMF
method.

Conclusion

We developed an algorithm that predicts the isoform
abundance from the junction array data. Unlike other
algorithms dealing with individual AS event at the exon
level, our method uses the NMF algorithm to obtain the
transcript models consistent with the ECgene prediction.
Then the relative isoform abundance is deduced from
the NNLS fitting of expression data.

Recent development of human exon chips from the
Affymetrix Inc. provides an exciting opportunity to examine
transcription at the exon level on the genome-wide scale.
It contains ~1.4 million probes that comprising ~4
probes/exon and ~40 probes/gene on average. Methods
to analyze such type of data are urgently needed.

Our method can be easily extended to other types of
microarrays with exon and junction probes. It is just a
matter of defining the probe-transcript matrix according
to the probe position in the transcript structure. However,
it should be pointed out that the catalog of splice variants
is not complete even with today’s vast amount of mMRNA
and EST sequences in the GenBank. Methods that take
the differential hybridization efficiency and identification
of novel splice variants into account simultaneously
should be developed in the near future.
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