Optimal Hydrophilization and Chondrocyte Adhesion of PLLA Films and Scaffolds by Plasma Treatment and Acrylic Acid Grafting

플라스마 처리와 아크릴산 결합에 의한 PLLA 필름 및 지지체의 최적 친수화와 연골세포 점착

  • Yang Hee-Seok (Biomaterials Research Center Korea Institute of Science and Technology, Department of Chemical Engineering, Hanyang University) ;
  • Park Kwi-Deok (Biomaterials Research Center Korea Institute of Science and Technology) ;
  • Ahn Kwang-Duk (Biomaterials Research Center Korea Institute of Science and Technology) ;
  • Kim Byung-Soo (Department of Chemical Engineering, Hanyang University) ;
  • Han Dong-Keun (Biomaterials Research Center Korea Institute of Science and Technology)
  • 양희석 (한국과학기술연구원 생체재료연구센터, 한양대학교 화공과) ;
  • 박귀덕 (한국과학기술연구원 생체재료연구센터) ;
  • 안광덕 (한국과학기술연구원 생체재료연구센터) ;
  • 김병수 (한양대학교 화공과) ;
  • 한동근 (한국과학기술연구원 생체재료연구센터)
  • Published : 2006.03.01

Abstract

To utilize as highly functional scaffolds for tissue engineering by improving hydrophobicity and cell compatibility of the exist polymer scaffolds, the biodegradable poly(L-lactic acid) (PLLA) films and scaffolds having the optimal hydrophilicity were prepared by in situ plasma treatment and grafting of a carboxyl acid-containing monomer, acrylic acid (AA) in the chamber. From the results of surface analyses, surface-modified nonporous PLLA film and dual pore scaffold surfaces showed high hydrophilicity due to the decrease in contact angle and the increase in carboxylic groups as compared with untreated PLLA control. In particular, among various surface modification methods, Ar(argon)+AA+AA sample prepared by Ar plasma and then acrylic acid treatments displayed lower contact angle and more carboxylic groups thar Ar/AA and Ar+TP(thermal polymerization) samples, indicating that Ar+AA+AA sample was optimally treated for improving its hydrophilicity. In the cases of surface modified nonporous PLLA films and dual pore scaffolds, the adhesion and proliferation of chondrocytes increased with increasing their hydrophilicity.

기존의 고분자 지지체의 소수성 및 세포친화성을 향상시켜 조직공학용 고기능성 지지체로 사용하기 위해서 여러 가지 플라스마 처리와 카복실기를 함유한 아크릴산(AA)을 직접 chamber내에서 in situ 그래프트 결합을 행하여 최적의 친수성을 갖는 생분해성 poly(L-lactic acid) (PLLA) 필름 및 이중기공 지지체를 제조하였다. 표면분석 결과, 표면개질된 비다공성 PLLA 필름 및 이중기공 지지체 표면은 미처리 PLLA control에 비해서 접촉각의 감소와 카복실기 함량의 증가로 친수성이 크게 증가하였다. 특히 여러 가지 표면개질 방법 중 Ar(아르곤)/AA 시료나 Ar+TP(열중합) 시료보다는 Ar 플라스마와 AA를 차례로 처리한 Ar+AA+AA 시료가 다른 시료들보다 접촉각이 낮고 카복실기가 많아서 최적의 표면 친수화 처리조건임을 알 수 있었으며, 표면개질된 PLLA 필름 및 이중기공 지지체의 경우 친수성이 증가함에 따라서 연골세포의 점착과 증식도 크게 향상되었다.

Keywords

References

  1. R. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  2. J. A. Hubbell and R. Langer, Chem. Eng. News, March 13, 42 (1995)
  3. R. M. Nerem and A. Sambanis, Tissue Eng., 1, 3 (1995) https://doi.org/10.1089/ten.1995.1.3
  4. A. Atala and R. P. Lanza, eds., Methods of Tissue Engineering, Academic Press, San Diego, 2002
  5. J. A. Hubbell, Trends Polym. Sci., 2, 20 (1994)
  6. R. P. Lanza, R. Langer, and W. L. Chick, Principle of Tissue Engineering, Academic Press, San Diego, 1997
  7. C. W. Patrick Jr., A. G. Mikos, and L. V. Mcintire, Frontiers in Tissue Engineering, Elsevier Science Press, Oxford, 1998
  8. J. Gao, L. Niklason, and R. Langer, J. Biomed. Mater. Res., 42, 417 (1998) https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<417::AID-JBM11>3.0.CO;2-D
  9. G. E. Park, M. A. Pattison, K. Park, and T. J. Webster, Biomaterials, 26, 3075 (2005) https://doi.org/10.1016/j.biomaterials.2004.08.005
  10. Y. L. Cui, A. D. Qi, W. G. Liu, X. H. Wang, H. Wang, D. M. Ma, and K. D. Yao, Biometerials, 24, 3859 (2003) https://doi.org/10.1016/S0142-9612(03)00209-6
  11. E. D. Boland, T. A. Telemeco, D. G. Simpson, G. E. Wnek, and G. L. Bowlin, J. Biomed. Mater. Res.: Appl. Biomater., 718, 144 (2004)
  12. Z. Ma, C. Gao, Y. Gong, and J. Shen, Biomaterials, 24, 3725 (2003) https://doi.org/10.1016/S0142-9612(03)00247-3
  13. J. P. Nuutinen, C. Clerc, T. Virta, and P. Tormala, J. Biomater. Sci. Polym. Edn., 13, 1325 (2002) https://doi.org/10.1163/15685620260449723
  14. Z. Ma, C. Cao, J. Yuan, J. Ji, Y. Gong, and J. Shen, J. Appl. Polym. Sci., 85, 2163 (2002) https://doi.org/10.1002/app.10803
  15. Y. Yang, M. -C. Porte, P. Manney, J. Alicia, E. Haj, J. Amedee, and C. Baquey, Nuclear Inst. Method Phy. Res. B, 207, 165 (2003) https://doi.org/10.1016/S0168-583X(03)00456-7
  16. H. Chim, J. L. Ong, J.-T. Schantz, D. W. Hutmacher, and C. M. Agrawal, J. Biomed. Mater. Res., 65A, 327 (2003) https://doi.org/10.1002/jbm.a.10478
  17. C. E. Holy, C. Cheng, J. E. Davies, and M. S. Shoichet, Biomaterials, 22, 25 (2001) https://doi.org/10.1016/S0142-9612(00)00136-8
  18. M. B. O. Riekerink, M. B. Claase, G. H. Engbers, D. W. Grijpma, and J. Feijen, J. Biomed. Mater. Res., 65A, 417 (2003) https://doi.org/10.1002/jbm.a.10520
  19. J. Yang, G. Shi, J. Bei, S. Wang, Y. Cao, Q. Shang, G. Yang, and W. Wang, J. Biomed. Mater. Res., 62, 438 (2002) https://doi.org/10.1002/jbm.10318
  20. Y. Wan, J. Yang, J. Yang, J. Bei, and S. Wang, Biomaterials, 24, 3757 (2003) https://doi.org/10.1016/S0142-9612(03)00251-5
  21. G. C. M. Steffens, L. Nothdurft, G. Buse, H. Thissen, H. Hocher, and D. Klee, Biomaterials, 23, 3523 (2002) https://doi.org/10.1016/S0142-9612(02)00091-1
  22. J. Yang, J. Bei, and S. Wang, Biomaterials, 23, 2607 (2002) https://doi.org/10.1016/S0142-9612(01)00400-8
  23. J. Yang, Y. Wan, J. Yang, J. Bei, and S. Wang, J. Biomed. Mater. Res., 67A, 1139 (2003) https://doi.org/10.1002/jbm.a.10034
  24. Z. Cheng and S. H. Teoh, Biomaterials, 25, 1991 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.038
  25. C. Elvira, F. Yi, M. C. Azevedo, L. Rebouta, A. M. Cunha, J. S. Roman, and R. Reis, J. Mater. Sci.: Mater. Med., 14, 187 (2003) https://doi.org/10.1023/A:1022036300783
  26. I. Bisson, M. Kosinshi, S. Ruault, B. Gupta, J. Hilborn, F. Wurm, and P. Frey, Biomaterials, 23, 3149 (2002) https://doi.org/10.1016/S0142-9612(02)00061-3
  27. B. Gupta, J. G. Hilborn, I. Bisson, and P. Frey, J. Appl. Polym. Sci., 81, 2993 (2001) https://doi.org/10.1002/app.1749
  28. Y. M. Ju, K. Park, K. -D. Ahn, J. -W. Rhie, and D. K. Han, Biomaterials, submitted (2006)
  29. H. J. Jung, K. Park, K. -D. Ahn, D. J. Ahn, and D. K. Han, Biomacromolecules, submitted (2006)
  30. H. S. Yang, K. -D. Ahn, and D. K. Han, Biomater. Res., 8, 135 (2004)
  31. H. J. Jung, K. -D. Ahn, and D. K. Han, Macromol. Res., 13, 446 (2005) https://doi.org/10.1007/BF03218479
  32. S. Sano, K. Kato, and Y. Ikada, Biomaterials,,14, 817 (1993) https://doi.org/10.1016/0142-9612(93)90003-K
  33. D. K. Han and J. A. Hubbell, Macromolecules, 30, 6077 (1997) https://doi.org/10.1021/ma970302u
  34. J. H. Lee, H. W. Jung, I. -K. Kang, and H. B. Lee, Biomaterials, 15, 705 (1994) https://doi.org/10.1016/0142-9612(94)90169-4
  35. G. Khang, S. J. Lee, J. H. Jeon, J. H. Lee, and H. B. Lee, Polymer(Korea), 24, 869 (2000)