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Abstract — We tested effects of bioactive lysophospholipids including lysophosphatidic acid (LPA), lysophos-
phatidylcholine (LPC), sphingosylphosphorylcholine (SPC), and sphingosine 1-phosphate (S1P) on membrane
potential in C6 glioma cells to understand action mechanism of the lysophospholipids. Membrane potential was
estimated by measuring fluorescence change of DiBAC-loaded glioma cells. LPA largely increased membrane
potential and the increase was gradually diminished. LPC also increased the membrane potential, however, the
increase sustained. SPC induced smaller increase of membrane potential than LPC. S1P was not able to change
the membrane potential. We tested effects of suramin and pertussis toxin on lysophospholipid-induced membrane
potential increase. However, there wasn’t any effect. The membrane potential increase was partially diminished in
Na'*-free media, suggesting Na* influx as a component of membrane potential changes. Thus, involvement of Na*
influx in the increase of membrane potential by lysophospholipids and independence of suramin-sensitive GPCRs
and pertussis toxin-sensitive G proteins are found in this study.
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INTRODUCTION

Lysophospholipids including lysophosphatidic acid (LPA),
lysophosphatidylcholine (LPC), sphingosylphosphorylcholine
(SPC), and sphingosine 1-phosphate (S1P) are bioactive lipid
mediators with diverse biological functions(Hla, T. et al. 2001;
Im, D. S. 2004; Lynch, K. R. and Im, D. S. 1999). Eight mem-
bers of a subfamily of G protein-coupled receptors (GPCR) for
S1P and LPA, formerly named Edg (endothelial differentiation
gene), have been identified and characterized(Hla, T. er al.
2001; Im, D. S. 2004; Lynch, K. R. and Im, D. S. 1999). Addi-
tionally, GPR23 for LPA and GPR3, GPR6, and GPR12 for
S1P have been reported(Im, D. S. 2004; Noguchi, K. ez al.
2003; Uhlenbrock, K. et al. 2002). Selective agonists and
antagonists are under development for medical applications
such as OMPT, SEW2871, Kil6424, JTE-013, and VPC32183
(Hasegawa, Y. et al. 2003; Tkeda, H. et al. 2003; Im, D. S. 2003;
Ohta, H. er al. 2003; Park, K. S. ef al. 2005; Wei, S. H. et al.

*Corresponding author
Tel: +82-51-510-2817,
E-mail: imds@pusan.ac.kr

Fax: +82-51-513-6754

2005). Three GPCRs including OGR1, GPR4, and GPR12
have been reported as SPC receptors(Ignatov, A. et al. 2003;
Xu, Y. et al. 2000; Zhu, K. et al. 2001), and GPR4 and GPR119
were identified as LPC receptors(Soga, T. et al. 2005; Zhu, K.
et al. 2001). However, pathophysiological significance of lyso-
phospholipids in each cell type and tissue are still poorly stud-
ied(Hla, T. et al. 2001).

Gliomas represent about half of all brain tumors, and among
them, glioblastoma multiformes is thought to be the most
malignant and common intracranial tumor(VandenBerg, S. R.
1992). Although generally not metastatic, glioblastoma cells
exhibit highly migratory and invasive behavior(Ishiuchi, S. et
al. 2002). LPA and S1P have been reported to evoke migratory
response in glioma cells(Malchinkhuu, E. et al. 2005; Man-
ning, T. J., Jr. et al. 2000; Steiner, M. R. ez al. 2002). In rat C6
glioma cells, LPA-induced migratory response was mediated
through Gj-protein-coupled LPA; receptor in a PI3K/Cdc42/
p38MAPK- and PI3K/Rac/INK-dependent manner (Malchinkhuu,
E. et al. 2005). Furthermore, LPA induces glioma proliferation
in an NHE1 and Rho kinase dependent manner(Cechin, S. R. et
al. 2005). And LPA also increases intracellular Ca?* concentra-
tion and activity of Erk1/2(Manning, T. J., Jr. et al. 2000). LPA
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and S1P also increase mRNA expression of c-fos in a pertussis
toxin-dependent manner(Segura, B. J. e al. 2005).

S1P via SIP, receptor induces expression of fibroblast growth
factor-2 and via S1P, stimulates PLC-Ca®* system and PLD
activation in C6 glioma cells(Sato, K. et al. 2000). S1P stimu-
lates human glioma cell proliferation through G;-coupled recep-
tor and PI3K(Van Brocklyn, J. ef al. 2002). S1P also increases
intracellular Ca** concentration and reverses morphologic
response by P-adrenaline in C6 glioma cells(Tas, P. W. and
Koschel, K. 1998). SPC increases mRNA expression of early
response gene c-fos in a pertusis toxin-independent man-
ner(Segura, B. J. et al. 2005). LPC has been shown to enhance
IL-1B-induced secretion of IL-6, an inflammatory cytok-
ine(Zumwalt, J. W. et al. 1999).

In this study, we tested effects of lysophospholipids on mem-
brane potential to understand action mechanism of the lyso-
phospholipids in C6 glioma cells and found distinct responses
by the lysophospholipids.

MATERIALS AND METHODS

Materials

1-oleoyl-sn-2-lysophosphatidic acid, 1-palmitoyl-sn-2-lyso-
phosphatidylcholine, D-erythro-sphingosine 1-phosphate, D-
erythro-sphingosylphosphorylcholine were purchased from
Avanti Polar Lipids (Alsbaster, AL, USA). DiBAC,(3) was
acquired from Biotium (Hayway, CA, USA). All other materi-
als were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Cell culture

Rat C6 glioma cells were maintained in high glucose
DMEM containing 10% (v/v) fetal bovine seram, 100 units/ml
penicillin, 50 pg/ml streptomycin, 2 mM of glutamine, and 1
mM of sodium pyruvate at 37°C in a humidified 5% CO, incu-
bator.

Measurement of membrane potential

The cells were sedimented, resuspended with a Hepes-buft-
ered medium consisting of 20 mM of Hepes (pH 7.4), 103 mM
NaCl, 4.8 mM KCl, 1.2 mM KH,PO,, 1.2 mM MgSO,, 0.5
mM CaCl,, 25 mM NaHCO;, 15 mM glucose and 0.1% bovine
serum albumin (fatty acid free), and then incubated for 30 min
with 5 uM of DiBAC,(3). Fluorescence emission at 530 nm
wavelength from excitation wavelength (488 nm) were mea-
sured every 0.1 sec by F4500 fluorescence spectrophotometer
(Hitachi, Japan). Membrane potential was estimated by mea-

suring fluorescence change of DiBAC-loaded cells.

Data presentation
Representative traces for membrane potential were chosen
out of 3 separate experiments and shown in Fig 1-5.

RESULTS

Lysophospholipids induce increases of membrane poten-
tial distinctly in C6 glioma cells.

LPA largely increased membrane potential and the increase
was gradually diminished (Fig. 1). LPC also increased the
membrane potential, however, the increase sustained. SPC
induced smaller increase of membrane potential than LPC. S1P
was not able to change the membrane potential. Increases of
membrane potential by lysophospholipids were observed in a
dose-dependent manner (Fig. 2). Significant increases were
observed by LPA, LPC and SPC in higher concentrations than
10 uM (Fig. 2).

Involvement of GPCR and G proteins in lysophospholip-
ids-induced membrane potential

Pertussis toxin has been used to elucidate involvement of Gy~
type G proteins(Im, D. S. et al. 1997). Since GPCRs for lyso-
phospholipids have been found, we treated C6 glioma cells
with pertusis toxin (100 ng/ml, 24 hr). However, LPA, LPC,
and SPC-induced changes of membrane potential were not
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Fig. 1. Effects of lysophospholipids on membrane potential in

C6 glioma cells. Representative traces of membrane potential

with 20 uM of LPA (A), LPC (B), SIP (C), or SPC (D) in DiBAC-

loaded C6 glioma cells were shown. Each lysophospholipid

was added at the arrow (30 sec).
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Fig. 2. Concentration-dependence of lysophospholipids-induced
increases of membrane potential. Representative traces of
membrane potential with different concentrations of LPA (A),
LPC (B), S1P (C), or SPC (D) in DiBAC-loaded C6 glioma
cells were shown.

blunted, suggesting no involvement of GPCR coupling to Gy;,-
type G proteins (Fig. 3). Suramin is a pharmacological tool to
test involvement of proteins in the plasma membrane such as
GPCRs(Kimura, T. et al. 2000). We treated C6 glioma cells
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Fig. 3. Effect of pertussis toxin treatment on lysophospholipids-
induced increases of membrane potential. Representative traces
of membrane potential with 20 uM of LPA (A), LPC (B), SIP
(C), or SPC (D) in DiBAC-loaded C6 glioma cells treated with
pertusiss toxin (100 ng/ml, 24 hr, lines) or without pertussis
toxin treatment (dotted lines) were shown.
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Fig. 4. Effect of suramin treatment on lysophospholipids-
induced increases of membrane potential. Representative traces
of membrane potential with 20 uM of LPA (A), LPC (B), SIP
(C), or SPC (D) in DiBAC-loaded C6 glioma cells treated with
suramin (100 mM, lines) were shown.

with suramin and found increase of membrane potential by the
treatment with suramin itself. Furthermore, significant change
on the increases of membrane potential by each lysophospho-
lipid was not observed in suramin-treated C6 glioma cells (Fig.
4)

Effect of Na‘*-free media on lysophospholipids-induced
membrane potential change

Next, we tested effect of Na*-free media on lysophospholip-
ids-induced membrane potential changes. In Na*-free media,
LPA-induced increase of membrane potential was diminished;
the peak of transient increase became a half and the maintained
increase became to the level of resting membrane potential
(Fig. 5). LPC and SPC-induced increases of membrane poten-
tial were also partially inhibited (Fig. 5). Thus, Na* influx from
the extracellular media to cytosol participates in the changes of
membrane potential by lysophospholipids in C6 glioma cells.

DISCUSSION

In C6 rat glioma cells, we for the first time observed changes
of membrane potential by bioactive lysophospholipids, that is
LPA, LPC, and SPC by using DiBAC,(3) fluorescence dye.
Previously, decrease of membrane potential and increase of
intracellular Ca?* concentration by bradykinin was reported in
C6 glioma cells(Reetz, G. and Reiser, G. 1996). Increases of
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Fig. 5. Effect of Na*-free media on lysophospholipids-induced
increases of membrane potential. Representative traces of
membrane potential with 20 uM of LPA (A), LPC (B), S1P
(C), or SPC (D) in DiBAC-loaded C6 glioma cells in Na*-free
media (lines) or in Na*-containing media (dotted lines) were
shown.

intracellular Ca?* concentration by LPA and S1P have been
reported and S1P, receptor is supposed to be responsible for
S1P Ca?* increase in C6 glioma cells(Sato, K. er al. 2000).
However, in our study, S1P did not evoke change of membrane
potential. LPA, LPC and SPC induced increases of membrane
potential, which have distinct magnitudes and different shapes.

There are four GPCRs for LPA, three GPCRs for SPC, and
two GPCRs for LPC so far reported(Hla, T. e al. 2001; Igna-
tov, A. et al. 2003; Im, D. S. 2004; Lynch, K. R. and Im, D. S.
1999; Noguchi, K. et al. 2003; Uhlenbrock, K. et al. 2002; Xu,
Y. et al. 2000; Zhu, K. et al. 2001; Soga, T. et al. 2005; Zhu, K.
et al. 2001). However, changes of membrane potential by LPA,
LPC, and SPC were not influenced by treatments with suramin
or pertussis toxin, suggesting that the effects are not mediated
through suramin-sensitive GPCRs or pertussis-toxin-sensitive
G proteins. The experiment in Na*-free media suggests that
LPA, LPC, and SPC increase membrane potential partly
through Na* influx.

In the present study, we showed increases of membrane
potential by LPA, LPC, and SPC in C6 glioma cells. Although
the precise mechanism for the increases was not elucidated, we
found involvement of Na* influx in the process and indepen-
dence of suramin-sensitive GPCRs and pertussis toxin-sensi-
tive G proteins. Although further investigation is necessary to
elucidate mechanism of Na* influx by each lysophospholipid,

involvement of suramin-insensitive GPCRs and pertussis
toxin-insensitive G proteins for the increase of membrane
potential by lysophopsholipids have to be considered.
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