ESTIMATION OF THE NUMBER OF ROOTS ON THE COMPLEMENT

KI-YEOL YANG

Abstract. Let $f : (X, A) \rightarrow (Y, B)$ be a map of pairs of compact polyhedra. A surplus Nielsen root number $SN(f; X \setminus A, c)$ is defined which is lower bound for the number of roots on $X \setminus A$ for all maps in the homotopy class of f. It is shown that for many pairs this lower bound is the best possible one, as $SN(f; X \setminus A, c)$ can be realized without by-passing condition.

1. INTRODUCTION

Zhao considered the minimum number $MF[f; X \setminus A]$ of fixed points on the complement $X \setminus A$ and defined the Nielsen number on the complementary space of a given map $f : (X, A) \rightarrow (X, A)$, $N(f; X \setminus A)$ which is a lower bound for $MF[f; X \setminus A]$ and has the same basic properties as $N(f; X, A)([8])$. Zhao[9] introduced a new concept “surplus Nielsen number”, $SN(f; X \setminus A)$, which is a lower bound for the number of fixed points on $X \setminus A$ for all maps in the homotopy class of f. And he showed that for many pairs this lower bound is the best possible one, as $SN(f; X \setminus A)$ can be realized without the by-passing condition.

This paper is a analogy of Zhao[9]. To determine the minimal number $MR[f; X \setminus A, c]$ of roots at $c \in B$ on $X \setminus A$ for all maps in the homotopy class of a given map $f : (X, A) \rightarrow (Y, B)$, the Nielsen root number on the complementary space $N(f; X \setminus A, c)$ is introduced in Yang[7], which is a lower bound for $MR[f; X \setminus A, c]$.

It is the purpose of this paper to introduce a better lower bound for $MR[f; X \setminus A, c]$, which can be realized without the hypothesis that A can be by-passed. The method used here follows that of Zhao[9]. After some preparation in section 2, the
surplus Nielsen root number of \(f \) on \(X \setminus A \), \(SN(f; X \setminus A, c) \), is defined (Definition 3.1), \(SN(f; X \setminus A, c) \geq N(f; X \setminus A, c) \). In section 4, we shall prove that \(SN(f; X \setminus A, c) = MR[f; X \setminus A, c] \) if \(X \) and every component of \(X \setminus A \) is a manifold with dimension different from 2.

2. Root Classes on the Subspace

Let \(f : X \to Y \) be a map of compact polyhedron, and let \(U \) be a subset of \(X \) which has finitely many arcwise connected components. A root class of \(f|_U : U \to Y \) is said to be a root class of \(f \) on \(U \).

Definition 2.1. Two roots \(x_0 \) and \(x_1 \) of \(f : X \to Y \) on \(U \) are said to belong to the same root class of \(f \) on \(U \) if there exists a path \(\alpha \) in \(U \) from \(x_0 \) to \(x_1 \) such that \(e_c \simeq f \cdot \alpha \rel{0,1} \).

It is obvious that every root class of \(f \) on \(U \) belongs to a root class of \(f \). The root classes of \(f \) on \(U \) have the same basic properties as original root classes. We repeat some basic properties of root classes, which can be found in [4].

Proposition 2.2. The root set \(\Gamma(f|_U) \) of \(f \) on \(U \) splits into a disjoint union of root classes on \(U \).

Proposition 2.3. Every root class of \(f \) on \(U \) is an open subset of \(\Gamma(f|_U) \).

Definition 2.4. Let \(H : f_0 \simeq f_1 : X \to Y \) be a homotopy. For \(x_0 \in \Gamma(f_0|_U) \) and \(x_1 \in \Gamma(f_1|_U) \), we say that \(x_0 \) and \(x_1 \) are \(H \)-related on \(U \) if there exists a path \(\beta \) in \(U \) from \(x_0 \) to \(x_1 \) such that \(H(\beta(t), t) \simeq e_c \rel{0,1} \).

Proposition 2.5. Let \(H : f_0 \simeq f_1 : X \to Y \) be a homotopy. Let \(x_0 \) belong to a root class \(R_0 \) of \(f_0 \) on \(U \) and let \(x_1 \) belong to a root class \(R_1 \) of \(f_1 \) on \(U \). Let \(x_0 \) and \(x_1 \) be \(H \)-related on \(U \). Then \(x_0' \) and \(x_1' \) are \(H \)-related on \(U \) for any \(x_0' \in R_0 \) and \(x_1' \in R_1 \).

Definition 2.6. For a root class \(R_0 \) of \(f_0 \) on \(U \) and a root class \(R_1 \) of \(f_1 \) on \(U \), we say that \(R_0 \) and \(R_1 \) are \(H \)-related on \(U \) if there exist \(x_0 \in R_0 \) and \(x_1 \in R_1 \) such that \(x_0 \) and \(x_1 \) are \(H \)-related on \(U \).

By Proposition 2.5, this definition is independent of the choice of \(x_0 \) and \(x_1 \).

For a subset \(D \subset X \times I \), the subset \(D_t = \{ x \in X \mid (x, t) \in D \} \) of \(X \) will be called the \(t \)-slice of \(D \).
Proposition 2.7. Let $H : f_0 \simeq f_1 : X \to Y$ be a homotopy, and let \mathbb{R}_0 and \mathbb{R}_1 be root classes of f_0 and f_1 on U respectively. Then \mathbb{R}_0 and \mathbb{R}_1 are H-related on U if and only if they are respectively the 0- and 1-slices of a single root class of H on $U \times I$.

3. Surplus Nielsen Root Number $SN(f; X \setminus A, c)$

Let (X, A) be a pair of compact polyhedra, then $(X \setminus A)$ consists of finitely many components and every component of $X \setminus A$ is arcwise connected and semilocally 1-connected. Let us consider the map $f : (X, A) \to (Y, B)$, and a homotopy of the form $H : (X \times I, A \times I) \to (Y, B)$.

Definition 3.1. A root class \mathbb{R} of f on $X \setminus A$ is said to be a nonsurplus root class of f on $X \setminus A$ if there is a point $x_0 \in \mathbb{R}$ and there is a path $\alpha : I, 0, I \setminus \{1\}, 1 \to X, x_0, X \setminus A$. A such that

$$f \cdot \alpha \simeq e_c : I, 0, 1 \to Y, c, B.$$

A root class of f on $X \setminus A$ which is not a nonsurplus root class of f on $X \setminus A$ is said to be a surplus root class of f on $X \setminus A$.

By Definition 2.1 and Definition 3.1, we have

Corollary 3.2. A root x_0 of f on $X \setminus A$ belongs to a nonsurplus root class if and only if there exists a path from x_0 to A satisfying the conditions of Definition 3.1.

Theorem 3.3. The number of surplus root classes of f on $X \setminus A$ is finite, each of them is a compact subset of X.

Proof. Let \mathbb{R} be a surplus root class of f on $X \setminus A$, we shall prove \mathbb{R} is compact.

Suppose $x_0 \in X - \mathbb{R}$, it suffices to find a neighborhood V of x_0 in X such that $V \cap \mathbb{R} = \emptyset$.

(i) If $x_0 \notin \Gamma(f; c)$, we can take $V = X - \Gamma(f; c)$.

(ii) If $x_0 \in \Gamma(f; X \setminus A, c)$, then x_0 belongs to a root class \mathbb{R}' of f on $X - A$. By Proposition 2.2 and 2.3, $\mathbb{R}' \cap \mathbb{R} = \emptyset$ and there is a neighborhood V of x_0 in $X \setminus A$ such that $V \cap \Gamma(f; X \setminus A, c) \subset \mathbb{R}'$. Since $X \setminus A$ is an open subset of X, V is also a neighborhood of x_0 in X and $V \cap \mathbb{R} \subset \mathbb{R}' \cap \mathbb{R} = \emptyset$.

(iii) If $x_0 \in A \cap \Gamma(f, c)$. Let C be the component of $X \setminus A$ containing R. Assume that $x_0 \in \text{cl}(C)$, otherwise we can take $V = X - \text{cl}(C)$. Pick a neighborhood W of c such that every loop in W is trivial in Y. There is an arclwise connected neighborhood V of x_0 such that $V \subset f^{-1}(W)$. Suppose $x_1 \in V \cap \Gamma(f |_C)$, take a path α in V from x_1 to x_0 with $\alpha(I - 1) \subset C$, then $f \cdot \alpha$ in W, hence

$$f \cdot \alpha \simeq e_c : I, 0, 1 \to Y, c, B$$

Thus, x_1 is in a nonsurplus root class of f on $X \setminus A$, and this implies that $V \cap R = \emptyset$.

From the proof above, we also get that the union of all the surplus root classes of f on $X \setminus A$ is a compact set. As in [3, p. 7, Corollary 1.13], we get that the number of surplus root classes of f on $X \setminus A$ is finite. □

From this theorem, we can define the index of a surplus root class of f on $X \setminus A$ in the same way as in [4], which is a homomorphism from $H^*_*(X) \to H^*_*(Y, Y - \{c\})$.

Definition 3.4. A surplus root class R of f on $X \setminus A$ is essential if $\text{ind}(f, R) \neq 0$; inessential if $\text{ind}(f, R) = 0$. The number of essential surplus root classes of f on $X \setminus A$ is called the *surplus Nielsen root number* of f on $X \setminus A$, denoted $SN(f; X \setminus A, c)$.

Lemma 3.5. Let $H : f \simeq g : (X, A) \to (Y, B)$ be a homotopy, let R_0 and R_1 be root classes of f and g on $X \setminus A$ respectively, and let R_0 and R_1 be H-related on $X \setminus A$. Then the following conditions are equivalent:

(i) R_0 is a surplus root class of f on $X \setminus A$,

(ii) R_1 is a surplus root class of g on $X \setminus A$,

(iii) R_0 and R_1 are respectively the 0- and 1-slices of a single surplus root class of H on $(X \times I) - (A \times I)$.

Proof. Since R_0 and R_1 are H-related on $X \setminus A$, we can assume, by Proposition 2.7, that R_0 and R_1 are respectively the 0- and 1-slices of a single root class R on $(X \times I) - (A \times I)$.

If R_0 is a nonsurplus root class of f on $X \setminus A$, then there is a path

$$\alpha : I, 0, 1 \to X, x_0, X \setminus A, A$$

such that

$$e_c \simeq f \cdot \alpha : I, 0, 1 \to Y, c, B,$$
where \(x_0 \in \mathbb{R}_0 \). Define a map \(i_0 : X \to X \times I \) and \(j_0 : Y \to Y \times I \) by \(i_0(x) = (x, 0) \) and \(j_0(y) = (y, 0) \) respectively. Then we get a path

\[
i_0 \cdot \alpha : I, \ 0, I - \{1\}, 1 \to X \times I, (x_0, 0), (X \times I) - (A \times I), A \times I
\]

with

\[
\mathbb{H} \cdot (i_0 \cdot \alpha) = j_0 \cdot (f \cdot \alpha) \simeq j_0 \cdot e_c : I, \ 0, 1 \to Y \times I, (c, 0), B \times I.
\]

Note that \((x_0, 0) \in \mathbb{R}\), it follows that \(\mathbb{R}\) is a nonsurplus root class of \(H\) on \((X \times I) - (A \times I)\).

Furthermore, if \(\mathbb{R}\) is a nonsurplus root class on \((X \times I) - (A \times I)\), then there is a path

\[
\beta : I, \ 0, I - \{1\}, 1 \to X \times I, (x', s), (X \times I) - (A \times I), A \times I
\]

with \((x', s) \in \mathbb{R}\) such that

\[
e_{c(s,s)} \simeq \mathbb{H} \cdot \beta : I, \ 0, 1 \to Y \times I, (c, s), A \times I.
\]

Thus, we \(x' \in \Gamma(f_s)\), where \(f_s\) is the \(s\)-slice of \(H\), i.e. \(f_s(x) = H(x, s)\). For a \(x_1 \in \mathbb{R}_1\), \(x_1\) and \(x'\) are respectively in the 1- and \(s\)-slices of \(\mathbb{R}\), and then they are \(H'\)-related on \(X - A\), where \(H'(x, t) = H(x, 1 - t + s \cdot t)\) is a homotopy from \(g\) to \(f_s\). By Definition 2.4, there is a path \(\gamma\) in \(X \setminus A\) from \(x_1\) to \(x'\) such that

\[
H'(\gamma(t), t) \simeq \gamma(t)rel\{0, 1\},
\]

i.e.,

\[
H(\gamma(t), 1 - t + s \cdot t) \simeq \gamma(t)rel\{0, 1\}.
\]

Define maps \(p : X \times I \to X\) and \(q : Y \times I \to Y\) by \(p(x, t) = x, q(y, t) = y\) respectively, then the product of \(\gamma\) and \(p \cdot \beta\)

\[
\gamma(p \cdot \beta) : I, \ 0, I - \{1\}, 1 \to X, x_1, X \setminus A, A
\]

is a path from \(x_1\) to \(A\), and

\[
g \cdot \gamma(t) = H(\gamma(t), 1) \simeq H(\gamma(t), 1 - t + s \cdot t) \simeq \gamma(t),
\]

\[
g \cdot (p \cdot \beta) = H(p \cdot \beta, 1) \simeq q \cdot (\mathbb{H} \cdot \beta) \simeq q \cdot e_{c(s,s)}.
\]

Moreover, we get

\[
e_{c(s,s)} \simeq g(\gamma(p \cdot \beta)) : I, \ 0, 1 \to Y, c, B.
\]

Thus, \(\mathbb{R}_1\) is a nonsurplus root class of \(g\) on \(X \setminus A\).

The converse is the same.

By this lemma we have
Theorem 3.6 (Homotopy invariance). If two maps \(f \simeq g : (X, A) \to (Y, B) \) are homotopic, then \(SN(f; X \setminus A, c) = SN(g; X \setminus A, c) \).

The next theorem follows directly from Theorem 3.3, Theorem 3.6 and the properties of the root index.

Theorem 3.7. \(SN(f; X \setminus A, c) \) is a nonnegative integer. Any map which is homotopic to \(f : (X, A) \to (Y, B) \) has at least \(SN(f; X \setminus A, c) \) roots on \(X \setminus A \). Thus, \(SN(f; X \setminus A, c) \leq MR[f; X \setminus A, c] \).

Theorem 3.8. Let \(f : (X, A) \to (Y, B) \) be a map of pairs of compact polyhedra, then \(SN(f; X \setminus A, c) \geq N(f; X \setminus A, c) \). If \(A \) can be by-passed in \(X \), then \(SN(f; X \setminus A, c) = N(f; X \setminus A, c) \).

Proof. By Definition 3.1 and [8, Theorem 2.3], a root class of \(f \) on \(X \setminus A \) which is contained in a weakly noncommon root class is a surplus one, all of them lie in an open subset \(X \setminus A \) of \(X \). By additivity of the root index, an essential weakly noncommon root class contains at least one essential surplus root class of \(f \) on \(X \setminus A \). Thus, \(SN(f; X \setminus A, c) \geq N(f; X \setminus A, c) \).

If \(A \) can be by-passed in \(X \), then a root class of \(f \) will contain at most one root class of \(f \) on \(X \setminus A \). By [8, Lemma 3.5], every surplus root class of \(f \) on \(X \setminus A \) is contained in a weakly noncommon root class, therefore \(SN(f; X \setminus A, c) = N(f; X \setminus A, c) \). \(\square \)

Following example shows that our new lower bound \(SN(f; X \setminus A, c) \) can be greater strictly than \(N(f; X \setminus A, c) \).

Example 3.9. Let \(X = S^1 = \{ e^{\theta i} \} \), and let \(A = \{ e^0, e^{\pi i} \} \). A map \(f : (X, A) \to (X, A) \) is given by \(f(e^{\theta i}) = (e^{-2\theta \pi i}) \). The point \(c = e^{\pi i} \).

As a map on \(X \), \(f \) is homotopic to a map \(g : X \to X \) given by \(g(e^{\theta i}) = e^0 \). Hence, \(f \) has no essential root class. It follows that \(N(f; X \setminus A, c) = 0 \). But, two roots \(\{ e^{\frac{\pi}{2} i}, e^{\frac{3\pi}{2} i} \} \) at \(c \) lie in different components of \(X - A \) and has non-zero indices. Thus, \(SN(f; X \setminus A, c) = 2 \).

4. Minimum Theorem for \(SN(f; X \setminus A, c) \)

Lemma 4.1 Let \((X, A) \) and \((Y, B) \) be pairs of compact polyhedra, where every component of \(X \setminus A \) is a PL manifold with dimension greater than 2. Let \(x_0 \) be
an isolated root of a root finite map \(f : (X, A) \rightarrow (Y, B) \) on \(X \setminus A \). Suppose \(\alpha : I, 0, I - \{1\}, 1 \rightarrow X, x_0, X \setminus A, A \) is a path from \(x_0 \) to \(A \) with \(\Gamma(f) \cap \alpha(I) = \{x_0\} \) and
\[
e_e \simeq f \cdot \alpha : I, 0, 1 \rightarrow Y, c, B.
\]

Then \(f \) is homotopic to a map \(f' : (X, A) \rightarrow (Y, B) \) with
\[
\Gamma(f') = (\Gamma(f) - \{x_0\}) \cap \{\alpha(1)\}.
\]

Proof. By a perturbation, we can assume that \(\alpha \) is a PL arc which containing no roots except for starting point. Let \(H : (I \times I, \{1\} \times I) \rightarrow (Y, B) \) be the homotopy from \(e_e \) to \(f \cdot \alpha \), i.e. \(H(t, 0) = c \) and \(H(t, 1) = f \cdot \alpha(t) \). Since \((Y, B)\) is a simplicial pair, we may assume that \(c \) is a vertex of \(Y \) and \{\(H(1, s) \)\}_{0 \leq s \leq 1} \) is a PL arc in \(B \) from \(c \) to \(f(x_0) \). Choose a conic neighborhood \(N(f(x_0), \varepsilon) = \{y \in Y | d(y, f(x_0)) < \varepsilon\} \) of \(f(x_0) \) such that \(N \cap H(\{1\}, I) \) is a line segment. We define a homotopy \(G : (X \times I, A \times I) \rightarrow (Y, B) \) by
\[
G(x, t) = \begin{cases}
 f(x) & \text{if } f(x) \notin N(c, \varepsilon t) \\
 \left(\frac{2}{\varepsilon t}d(f(x), f(x_0)) - 1\right)f(x) \\
 + (2 - \frac{2}{\varepsilon t}d(f(x), f(x_0)))f(x_0) & \text{if } 0 < \frac{\varepsilon t}{2} < d(f(x), f(x_0)) \leq \varepsilon t \\
 H(1, 1 - t + \frac{2}{\varepsilon t}d(f(x), f(x_0))) & \text{if } 0 \leq d(f(x), f(x_0)) \leq \frac{\varepsilon t}{2}
\end{cases}
\]
(cf. [4]). We define \(g : (X, A) \rightarrow (Y, B) \) by \(g(x) = G(x, 1) \), then \(g \) is homotopic to \(f \) with \(\Gamma(g) = \Gamma(f) \cup \{\alpha(1)\} \) and \(e_e \simeq g \cdot \alpha \).

By using the method in [6] and [2], we can combine the root \(x_0 \) to \(\alpha(1) \).

Theorem 4.2. Let \((X, A)\) and \((Y, B)\) be pairs of compact polyhedra such that

1. \(X \) and \(Y \) are PL manifolds with same dimension,
2. every component of \(X \setminus A \) is a PL manifold with dimension greater than 2.

Then every map \(f : (X, A) \rightarrow (Y, B) \) is homotopic to a map \(g : (X, A) \rightarrow (Y, B) \) with \(SN(f; X \setminus A, c) \) roots on \(X \setminus A \).

Proof. By transversality and homotopy extension, we can assume that \(f \) is root-finite and that all roots of \(f \) on \(X \setminus A \) lie in maximal simplexes. We can unite roots belonging to the same root class of \(f \) on \(X \setminus A \) as in [6]. Suppose \(x_0 \) lies in a nonsurplus root class, then there is a path
\[
\alpha : I, 0, I - \{1\}, 1 \rightarrow X, x_0, X \setminus A, A
\]
such that

\[e_c \simeq f \cdot \alpha : I, 0, 1 \to Y, c, B. \]

By Lemma 4.1, we shall move the root \(x_0 \) to \(\alpha(1) \in A \). As \(X \) has no local cut point, we can take the paths with different terminal points which are not roots. Finally, delete root classes on \(X \setminus A \) which consist of a single root of index zero by the usual method (\cite[p.123, Theorem 4]{[1]}). Then we get a map \(g : (X, A) \to (Y, B) \) with \(SN(f; X \setminus A, c) \) roots on \(X - A \).

\[\square \]

REFERENCES

Department of Mathematics Education, Sunchon National University, Suncheon Cheonan 540-742, Korea

Email address: gyyang@sunchon.ac.kr