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ABSTRACT-This study employed the perturbation method, the Edgeworth series, the reliability optimization, the
reliability sensitivity technique and the robust design to present a practical and effective approach for the robust reliability
design of vehicle components with arbitrary distribution parameters on the condition of known first four moments of
original random variables. The theoretical formulae of the robust reliability design for vehicle components with arbitrary
distribution parameters are obtained. The reliability sensitivity is added to the reliability optimization design model and the
robust reliability design is described as a multi-objection optimization. On the condition of known first four moments of
original random variables, the respective program can be used to obtain the robust reliability design parameters of vehicle
components with arbitrary distribution parameters accurately and quickly.
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1. INTRODUCTION

In the recent years much research has been done to
quantify uncertainties in engineering systems and their
combined effect on the reliability. Theoretically, these
uncertainties are modeled as random variables governed
by joint probability density or distribution functions. In
practice, the exact joint probability density functions are
often unavailable or difficult to obtain for reasons of
insuificient data. Not infrequently, the available data may
only be sufficient to evaluate the first few moments such
as the mean, variance and correlations. Current design
practice tends to account for the uncertainties by use of
factors of safety and reliability. During the last four
decades, reliability design (Zhang et al., 1998; Haldar
and Mahadevan, 2000; Zhang and Liu, 2002), reliability
optimization design (Tu et al., 1999; Lee et al., 2003;
Chot et al., 2005; Zhang et al., 2005¢) and reliability
sensitivity analysis technique (Wu, 1994; Zhang ef al.,
2003; Zhang er al., 2005a) have been described.
Quality engineering tools from Taguchi Method
(Taguchi, 1993) has been successfully employed in the
last few decades to develop robust products that will
perform their intended functions with low sensitivity to
variations of design variables. A robust design is, in
general, considered to be one that is insensitive to
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variations of design variables. Such a design can be
achieved by selecting suitable design varnables to render
the design performance insensitive to the various causes
of variation. In recent years, the robust design and the
robust reliability design have been used widely and
developed well in industrial product design field (Liaw
and DeVries, 2001; Sandgren and Cameron, 2002; Zhang
et al., 2005b).

In practical engineering, the aforementioned methods
are very effective to improve product design with the
consideration of the uncertainties, which include geo-
metry parameters, material properties, loadings, etc.
Unfortunately, in the industry reliability optimization,
reliability sensitivity technique and robust design usually
have been used separately in different design stages for
different purposes. Therefore, It is essential to combine
reliability optimization, reliability sensitivity and robust
design and to develop a robust reliability design
approach. The objective of this paper is to extend the
concept of reliability optimization through the use of
reliability sensitivity coupled to a robust rehability design
method for making reliability of the product insensitive
to the variations of the design variables.

A great number of methods presume that original
random variables are normal distributions. When non-
normal original random variables are involved, Rosenblatt
transformation (Rosenblatt, 1952) and the Hasofer Lind-
Rackwitz Fiessler (Hasofer and Lind, 1974; Liu and
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Kiureghian, 1991) are often used. However, the exact
joint probability density function is often unavailable or
difficult to obtain for reasons of insufficient data. Not
infrequently, the available data may only be sufficient to
evaluate the first few moments such as the mean,
variance, the third moment and the fourth moment of the
random variables. Under such a condition, it is difficult to
employ the Rosenblatt transformation and the Hasofer
Lind-Rackwitz Fiessler and to obtain the robust reliability
design parameters without distribution function. Thus, an
alternative computational method of robust reliability
design with arbitrary distribution parameters is required.
The paper discusses robust reliability design of vehicle
components with arbitrary distribution parameters on the
condition of known first four moments of original
random variables. Using the perturbation method, the
Edgeworth series, reliability optimization, reliability
sensitivity technique and robust design, this paper
proposes an efficient numerical method for robust
reliability design of vehicle components with arbitrary
distribution parameters. The robust reliability design
method 1s formulated in this paper. The approach
presented can be used to obtain information of robust
reliability design for some vehicle components accurately
and quickly.

2. PERTURBATION METHOD OF
RELIABILITY DESIGN

Most design of engineering systems must be accomplished
without the benefit of complete information; consequently,
the assurance of performance can seldom be perfect.
Moreover, many decisions that are required during the
process of design are invariably made under conditions of
uncertainty. Therefore, there is invariably some chance of
nonperformance or failure and of its associated adverse
consequences; hence, risk is often unavoidable.

The vector of random parameters X and the state
function g(X) are expanded as

X=X,+eX, (1)
g(X) = g X) teg,(X) (2)

where ¢ 1s a small parameter. The part of equations (1)
and (2) that expressed by subscript d is the certain part of
the random parameters, and the part that expressed by
subscript p is the random part, having a zero mean value
in the random parameters. Obviously, it is necessary for
the value of the random part to be smaller than the value
of the certain part. Both sides of equations (1) and (2) are
evaluated about the mean value of random variables as
follows

E(X)=E(X,)+eE(X,)=X,=X (3)
ke = E[g(X)] = E[gAX)] +eE[g,(X)] = g/ X)~g(X) (4)

Similarly, according to the Kronecker algebra (Vetter,
1973), the both sides of equations (1) and (2) are
evaluated about the variance, the third moment and the
fourth moment of the random variables and the state
function as follows

Var(X) = E{[X-E(X)]""} = €E[X;"] (5)
Ci(X) = E{[X-E(X)]""} = E[X}"] (5b)
C.(X) = E{[X-EX)|"} = €E[X}7] (5¢)
Var[g(X)] = E{[g(X)-E(g(X))]"} = ng{[gp(X)]ﬂ(]é |
a
Ci[g(X)] = E{[g(X)-E(g(X))]""} = eSE{[gp(X)J[”}(éb)
C.[g(X)] = E{[g(X)-E(g(XN]""} = £’E{ [gp(m][4]i6 |
C

where the Kronecker power is P“'=P@P" ! =P P
...® P, and the symbol f represents Kronecker product
which 1s defined as (A4),.,®(B)s., = [aB]sxq -

By expanding the state function g,(X) to first-order
approximation in a Taylor series of vector-valued functions
and matrix-valued functions at a point E(X)=X,, which is
on the failure surface g,(X;)=0, the expression of g,(X) 1s
given

_ 084X) 7
2,(X) X X, (7)

Substituting equation (7) into equations (6), we obtain

0" = Var[g(X)] = sE[(Q%?) mXLﬂ

_ (Q%(%Qj Var(X)

0,=Cs[g(X)]= ezE[(ng:XﬂT) ") XE]}

N, = Cy[g(X)]= 84E[(ﬁ%)) * X}[}-ﬁt]}

(8a)

(8b)

(8¢)

where Var(X) is the variance matrix that include all
variance and covariance of the random parameters, C;(X)
and C,(X) are the third, the fourth central moments
matrix that include all the third, the fourth central
moments of the random parameters respectively. c,,0,
and m, are the variance, the third and the fourth central
moments of the state function g(X) respectively.
The reliability index 1s defined as

_ 4 _ _E[g(X)] 9
. o, JVar[g(X)] | )




ROBUST RELIABILITY DESIGN OF VEHICLE COMPONENTS WITH ARBITRARY 861

It may be emphasized that the first-order approximation
of 4, and o, derived above must be evaluated at the mean
values (ux, tx,, ..., 44x ) . In some approximate sense, the
reliability index may be direct used as a measure of
reliability. If the distributions of the original random
variables are normal, the distance from the “minimum”
tangent plane to the failure surface may be used to
approximate the actual failure surface, and the
corresponding reliability, namely reliability, may be
represented, as tollows

R=d(p) (10)

where @ ) is the standard normal distribution function.
In the case where the state function g(X) has non-normal
distributions, Equation (10) is not valid. It is well known
that the probabilistic characteristics of random variables
could be described integrally with the probability density
function or cumulative distribution function. Simultaneously,
it could also be described with the moments of random
variables. In reality, due to the lack of statistical data, the
probability density function or cumulative distribution
function of some original random variables are often
unknown, and the probabilistic characteristic of these
variables are often expressed using only statistical
moments. On the condition of known first four moments
of original random variables, the probability distribution
function of the standardized variable is approximately
expressed by the first four moments of original random
variables using the Edgeworth series. Thus, information
of robust reliability design for vehicle components with
arbitrary distribution parameters can be obtained.

3. EDGEWORTH SERIES

For a state function g(X), the standard forms can be
expressed as

g(X)— 4,
9)

g

y= (11)
The arbitrary distribution function of the standard
random variable y that is approximately expressed by the
standard normal distribution function using the
Edgeworth series 1s addressed in (Cramer, 1964)

F») = @) -E () + 2 ()

(12)
+l%§ #(y)

where the first four terms are available, and ), 4, are the
coefficient of skewness and the coefficient of kurtosis,
respectively. @”( ) denotes ith differentiation of & ).

p=5 - (13)

p=% (14)
Gg

()= (1""Ho () e) (15)

where ¢ ) i1s the standard normal probability density
function and H,.( ) is the Hermite polynomial

{fagﬂ(y) = yH,(»)~yH () (16)
HOM) =1, H(()=y

Thus the reliability R is represented as

— — g(X)_ﬂg _Eg
R(P) = Ple(3)20) = P ET L 4]
= 1—P(y<—f) = 1-F(-f)

Due to the first four terms of the Edgeworth series are
only used, sometimes the reliability R>1 may happen
when Equation (17) is used to determine R. If R>I
appears, the amendatory expression from (Zhang et al.,
1998) is employed in this paper

(17)

R(ﬂ)—*@(ﬁ) 18
,8} (18)

R(p)= R(ﬁ)*{
{1+ [R(D-DP1p}

According to rehability theory, the rehability R 1s

between 0 and 1, namely, 0<R<1. The amendatory

expression (18) can ensure the reliability R to satisfy

0<R<1 gradually and accurately.

4, RELIABILITY SENSITIVITY

It is of interest to establish the sensittvity from the system
reliability analysis. The reliability sensitivity with respect
to the mean value of the system parameters is
approximately derived as follows

DR(f) _ R(B)RB 2, - (19)
DX  RB dupnx
where

T = o (1- Mg L

op
+2—{4(g§~3)ﬂ3(fﬁ)+7i2(§§)zlfs(—ﬂ)] 20)

l G, G,

[l e 38 i)
5%% _ 1 (21)

Oy _|0g g 9g (22)
5X1 an aAXn
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The reliability sensitivity with respect to the standard
deviation of the system parameters is approximately
derived as follows

DR(B)_ _|oR(S) 3 . OR(B)|_ 0o, (23)
DVar(X) 0p 0o, Oo, |[0Var(X)

where

Of _ U

-4 (24)

R cp(—ﬂ)[%%m(—ﬂﬁ éﬂéHi-ﬂﬁigHs(—ﬂ)}
G, Gg

0G, 1 QG;
(25)
oo, _ 1 |go.. 0o
£ = 088 2
oVar(X) ZGg[aX@)a (26)

Substituting the known conditions and the results derived
earlier into equations (19) and (23), the reliability
sensitivity and are obtained.

If the reliability computed by the Edgeworth series
appear R>1, the results computed by the amendatory
expression (18) are closer to that by Monte Carlo
simulation than that by the Edgeworth series in interval
[0.99, 1] that is usually used for reliability analysis in
engineering computation practice. The distribution function
curves derived from the amendatory expression (18) is
monotonic in interval [0, 1]. Therefore, if the reliability
computed by the Edgeworth series appear R>1, the
reliability sensitivity that computed by the differentiation
of the amendatory expression is more accurate than that
computed by equations (19) and (23). (Sometime, the
results computed by equations (19) and (23) are not
right). If the results computed by the Edgeworth series
appear R>1, the reliability sensitivity with respect to the
reliability index is derived as follows

HB=DIR(P)-Np)]-1

OR (B) _ OR(p) OR(f)
38 op J{

Y “"(ﬁ)} {1+[R(B)- A B1B}"

LRP) - DP L+ [R(B) - AP By In{1+[R(B)— AP B}

{1+[R(B)- P15
HR(P) - Ap)1p) (27)
(1+[R(B-HP1B"

Substituting Equation (27) into dR(B)/0f of equations
(19) and (23), the reliability sensitivity DR/DX and
DR/DVar(X) are obtained.

5. ROBUST RELIABILITY DESIGN

The robust reliability design of vehicle components is
described as a multi-objective optimization, in which the

minimum of the weight of vehicle components and the
minimum of reliability sensitivity with respect to the
mean value of design variables of vehicle components
are taken as objective functions, while including a series
of reliability and geometry constrains etc.. A typical
robust reliability design problem can be formulated in the
following form

1

minimize AX)=E{fX)}~AX)= Zw’fﬁf@') ! (28)

subject to R=R,, ¢:(X)=0, (i=1,...,)

where w, are the weighting coefficients satisfying the
following conditions '

O<wi<1and D w,=1 (29)
. k=1 .

The value of w, is determined depending on the
importance of each objective function. In the paper, two
objective functions are given, f, (X) is the area of vehicle
components, and £,(X) is reliability sensitivity with
respect to the mean value of design parameter vector x=
(x; x; = x,). R, is given reliability, is the inequality
constraints.

6. NUMERICAL EXAMPLES

6.1. Robust Reliability Design of Semi-axle

Axle shafts are divided into three main groups,
depending on the stresses to which the shaft is subjected:
(a) fully floating, (b) three-quarters floating, and (¢) semi-
floating (in Figure 1). The fully floating shaft 1s generally
fitted on commercial vehicles where torque and axle
loads are greater. The construction of fully floating
consists of an independently mounted hub that rotates on
two bearings widely spaced on the axle housing. This
arrangement relieves the shaft of all stresses except
torsion; so the construction is very strong. Studs
connecting the shaft to the hub transmit the drive and
when the nuts on these studs are removed, the shaft may
be withdrawn without jacking up the vehicle. The semi-
floating shaft is suitable for light cars. A single bearing at
the hub end 1s fitted between the shaft and the housing, so
the shaft will have to resist all the stresses previously
mentioned. To reduce the risk of fracture at the hub end
(this would allow the wheel to fall off), the shaft diameter
is increased. Any increase must be gradual, since a
sudden change in cross-sectional areas would produce a
stress-raiser and increase the risk of failure due to fatigue.
The three-quarter floating shaft is defined the fully
floating and semi-floating shaft, any alternative between
the may be regarded as a construction which has a single
bearing mounted between the hub and housing. The main
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fully three-quarters

floating floating semi-floating

Figure 1. Structure of semi-axle.

shear stress on the shaft is relieved but all other stresses
still have 1o be resisted.

On the basis of reliability theory, the state equation of
the semi-axle is defined as

g(X)=r-s (30)

where 7 is material strength of semi-axle. The original
random variable vector X is given by X=(r T M d)’
respectively. where the mean matrix E(X), the variance
- matrix Var(X), the third central moment matrix C,(X) and
the fourth central moment matrix C,(X) are known.
Generally speaking, geometry parameters and material
property are usually said to have normal distributions.
But 1if the design variable has the arbitrary distribution,
the proposed method could be applied.

The torsional moment T and the bending moment M
on risk section are arbitrary distributed random variable
with first four moments (7)=(1.1399x10° N-mm,
9.1904x10° N'mm, 9.038x10" (N-mm)’, 3.9719%10'
(N-mm)*) and (M)=(1.4314x10* N-mm, 1.3011x10° N
mm, 2.5622x10° (N'mm)’, 1.5845x10" (N-mm)")
respectively. The material strength r is (u, ¢,)=(820, 32)
MPa.

(1) If the reliability R,=0.999 is given, the design sizes,
the minimum diameter d of the semi-axle computed by
reliability optimization is as follows

d = 11.90469 mm

According to the results computed by the reliability
design optimization, the reliability index £, the reliability
R and the reliability sensitivity DR/DXx of the semi-axle,
therefore, becomes

[=3.752273, Rg=0.9990106, Ry,cs=0.99873,

- _OR 3
DR/Dx =-—==6.303x10
X > X

Er—

Ri—Ryest —10.9990106—-0.99873|— 0.0281%
0.99873

Rycs

where Ry i1s the reliability that computed by the
Edgeworth series, Ry is the reliability that computed by
Monte Carlo simulation (MCS) with 10° samples, e; is
the relative error of the reliability R.

(2) If the reliability R,=0.999 is given, the design sizes,

the mintmum diameter d of the semi-axle at design point
1s extracted.

Find the minimum f£,(x) of the area of the semi-axle
and the minimum f(x) of the reliability sensitivity DR/
Dx of the semi-axle respectively

filx) =7 (31)
filx) = | 2R (32)
Ox;
where the design variables are X=x;=d.
Subject to
R—R,>0 | (33)

The initial values, =15 mm, is given, and the solution

for d of optimization is
d=12.3047 mm
According to the results computed by the robust
reliability design approach, the rehability index f, the
reliability R and the reliability sensitivity DR/Dx of the
semi-axle, therefore, becomes
[=5.058967, R:=0.9999885, Rycs=0.99975,

_ OR §
DR/D% =% — 1 108x 10
X5 8
o |Re—Rucd - \0.9999885—0.99975  0.02386%
" Ros 0.99975

On the basis of the above results, the bigger the reliability
index S and the reliability R are, the less the values of the
reliability sensitivities DR/Dx are, the more robust the
reliability of the semi-axle 1s. For this example, the two
methods (this new method and the reliability design
optimization) have been employed and the new method is
very well for making the reliability insensitive to the
variations of the design variables.

The relation curves between the reliability index £ and
the reliability R that computed by the Edgeworth series,
the amendatory expression and Monte Carlo simulation
with 10° samples of the semi-axle are illustrated in Figure
2 respectively. If the results computed by the Edgeworth
series do not appear R>1, the relation curves in Figure 2
indicate the results computed by the Edgeworth series are
closer to that by Monte Carlo simulation than that by the
amendatory expression. If the results computed by the
Edgeworth series do not appear R>1, the Edgeworth is
selected; If the results computed by the Edgeworth series
appear R>1, the amendatory expression 1s selected.

6.2. Robust Reliability Design of Rear-axle Housing

The differential in a rear-drive vehicle 1s housed in the
rear-axle housing (in Figure 3), or carrier. Two main
types of housing are in use: (a) split, split housing axles
are formed in two halves and bolted together to contain
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Figure 3. Structure of rear-axle housing.

the final drive and differential. (b) banjo, banjo axles are
normally built up of steel pressings and welded together.
The crown wheel assembly is mounted in a malleable
iron housing that is bolted to the axle.

The integral axle housing is most commonly found on
late-model cars and light trucks. A cast-iron carrier forms
the center of the axle housing. Steel axle tubes are
pressed into both sides of the carrier to form the housing.
The housing and carries have a removable rear cover that
allows access to the have a removable rear cover that
allows access to the differential assembly. Because the
carrier 1S not removable, the differential components
must be removed and serviced separately. In addition to
providing a mounting place for the differential, the axle
housing also contains brackets for mounting suspension
components such as control arms, leaf springs, and coil
springs.

The rear-axle housing is generally loaded torsional
moment and bending moment. The risk section is on two
sides of leaf spring seats. The section is tubular
numerously, and some section is quadrate with a circular

hole.

The bending moment M on risk section is arbitrary
distributed random variable with first four moments (M)=
(1.0976x10° N-mm, 1.0367x10" N-mm, —8.1367x10%
(N-mm)’, 4.4569x10* (N-mm)*). The materlal strength
ris (i, 0,)=(433, 27.5) MPa.

(1) If the reliability R;=0.999 is given, the desagn s1zes,
d, b, h, of the rear-axle housing with quadrate section
computed by reliability optimization is as follows

b=122.7392 mm, #=143.3525 mm, d=102.739 mm
According to the results computed by the reliability
design optimization, the reliability index /£, the reliability
R and the reliability sensitivity DR/DXx " of the rear-axle
housing with quadrate section, therefore, becomes

[=3.014851, R,=1.004416, R'=0.9990001,
Rycs=0.99658,

- 7
2.564x10"
DR/Dx =| SRORIR I _| 000107
0b ohod - 4
—2.228% 107"
g, = |[R —Rucg —]0.9990001-0.99658|_ ¢ 2428%
Rucs 0.99658
where R is the reliability that computed by the

amendatory expression.

(2) If the reliability R,=0.999 is given, the design sizes,
d, b, h, of the rear-axle housing with quadrate section at
design point can be extracted. |

Find the minimum f/(x) of the area of the rear-axle
housing with quadrate section and the minimum f(x) of
the reliability sensitivity DR/DXx " of the rear-axle housing
with quadrate section respectively

filx) = xlxz—zx (34)

f= () (35)

i=1

where the design variables are x=[x; x, x;]'=[b h dJ}’.
Subject to

R—Ry>0 (36)

x1—x32 10 | (37)
Xo—X32 10 (38)
Xy—x, 20 (39)

The 1nitial values, /=160 mm, /=164 mm, 4=120 mm
are given, and the solution for b, A, d of optimization are
b=125.4279 mm, /%=153.8173 mm, d=115.4277 mm

According to the results computed by the robust
reliability design approach, the reliability index f, the
reliability R and the reliability sensitivity DR/DXx " of the
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Figure 4. Relation between R and f of rear axle housing
with quadrate section.

rear-axle housing with quadrate section, therefore,
becomes
[=3.975766, R.=1.000421, R'=0.9999681,
Ryics=0.99936,

_ A
PR/ = ORORORT 9.748><10_5
X = ohohod | 1.772x 107 | >
-9.772x 107

On the basis of the above results, the bigger the
reliability index £ and the reliability R are, the less the
values of the reliability sensitivities DR/Dx” are, the
more robust the reliability of the rear-axle housing is. For
this example, the two methods (this new method and the
reliability design optimization) have been employed and
the new method 1s very well for making the reliability
insensitive to the variations of the design variables.

The relation curves between the reliability index £ and
the reliability R that computed by the Edgeworth series,
the amendatory expression and MCS with 10° samples of
the rear-axle housing with quadrate section are illustrated
in Figure 4 respectively. If the results computed by the
Edgeworth series appear R>1, the relation curves in
Figure 4 indicate the results computed by the amendatory
expression are closer to that by MCS than that by the
Edgeworth series in interval [0.99, 1] that is usually used
for reliability analysis in engineering practice.

7. CONCLUSIONS

This paper probes into the method of robust reliability
design for vehicle components with arbitrary distribution
parameters. The problem is formulated as a multi-objective
optimization problem. Two examples are used to illustrate
robust reliability design formulation and demonstrate the
approach. Reliability design and reliability optimization

design utilizes reliability theory to deal with uncertainties,
and robust reliability design attempts to make the
reliability variations of vehicle components are insensitive
to variations of design variables. Using the method,
robust reliability design parameters of vehicle components
can be obtained accurately and quickly, so it 1s an
important exploration of robust reliability design research
of vehicle components. The accuracy of the approach
proposed is evaluated by comparing their results to that
obtained from MCS. Based on the results, the method
presented is an efficient and practical robust reliability
approach of vehicle components. Similarly if the case
studies are very complicated, the implicit limit-state
functions, such as those defined by the large-scale finite
element models, should be used to demonstrate the
general applicability of the proposed method.
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